A347295 a(n) = 1 + (a(n-1) interpreted as a hexadecimal number); a(1)=1.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 17, 24, 37, 56, 87, 136, 311, 786, 1927, 6440, 25665, 153190, 1388945, 20482374, 541598581, 22571222402, 2359835108355, 621877794997078, 441783186122961017, 1256072821702542102552, 22166920289514371672974675
Offset: 1
Examples
a(1)=1; 1_16 = 1_10; 1 + 1 = 2 = a(2); 2_16 = 2_10; 2 + 1 = 3 = a(3); ... This will continue till a(10)=10, when base differences start to have an effect. 10_16 = 16_10; 16 + 1 = 17 = a(11); 17_16 = 23_10; 23 + 1 = 24 = a(12); 24_16 = 36_10; 36 + 1 = 37 = a(13); 37_16 = 55_10; 55 + 1 = 56 = a(14).
Crossrefs
Cf. A102489.
Programs
-
Mathematica
NestList[FromDigits[IntegerDigits[#], 16] + 1 &, 1, 30] (* Amiram Eldar, Jan 23 2022 *)
-
Python
#Hex-dec switch seq=[] seq.append(1) print(seq[0]) for i in range(1,50): dec=int(str(seq[i-1]), 16) dec=dec+1 seq.append(dec) print(seq)
Formula
a(n) = A102489(a(n-1)) + 1. - Jon E. Schoenfield, Jan 23 2022
Limit_{n->infinity} log(a(n))/log_10(16)^n = 0.180064331228631629088182553063.... - Jon E. Schoenfield, Jan 23 2022
Comments