This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347313 #26 Sep 08 2021 08:10:30 %S A347313 8,11,7,20,28,19,37,51,53,47,101,116,58,63,99,81,136,146,159,153,115, %T A347313 213,176,197,302,151,215,223,169,230,276,274,255,188,233,318,440,341, %U A347313 347,359,369,282,386,396,405,520,638,460,472,698,357,492,507,514,529,535,558,702 %N A347313 Index of prime(n) in A347113, or -1 if that prime never appears. %C A347313 Conjecture: every prime appears in A347113 (every number, in fact). %C A347313 The graph shows three three strong lines (and many other points). Can the primes on the three lines be described in a simple way? %H A347313 Alois P. Heinz, <a href="/A347313/b347313.txt">Table of n, a(n) for n = 1..10000</a> %o A347313 (Python) %o A347313 from math import gcd %o A347313 from sympy import prime %o A347313 def A347313(n): %o A347313 p = prime(n) %o A347313 i, j, nset, m = 1, 2, {1}, 2 %o A347313 while True: %o A347313 k = m %o A347313 i += 1 %o A347313 while k == j or gcd(k,j) == 1 or k in nset: %o A347313 k += 1 %o A347313 if k == p: %o A347313 return i %o A347313 j = k+1 %o A347313 nset.add(k) %o A347313 while m in nset: %o A347313 m += 1 # _Chai Wah Wu_, Sep 06 2021 %Y A347313 Cf. A347113. %K A347313 nonn %O A347313 1,1 %A A347313 _N. J. A. Sloane_, Sep 06 2021