This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347324 #20 Sep 19 2021 19:28:14 %S A347324 0,2,12,48,167,541,1692,5187,15700,47030,139986,415385,1230417, %T A347324 3638657,10744058,31705658,93563017,276079102,814408697,2402076923, %U A347324 7085491321,20902994644,61668276920,181926014930,536710980085,1583529043750,4672393755494,13786612213841 %N A347324 Row sums in A347738 when that sequence is written as a triangle. %C A347324 Ratio of successive terms, a(n+1)/a(n), seems to be converging to ~2.9506. - _Michael S. Branicky_, Sep 19 2021 %e A347324 Row 2 is 4, 3, 2, 2, 1, 0, which has sum 12. %t A347324 Total /@ TakeList[Import["https://oeis.org/A347738/b347738.txt", "Data"][[All, -1]], {1}~Join~Array[3*2^# &, 13, 0]] (* _Michael De Vlieger_, Sep 13 2021, generated using the b-file at A347738 *) %o A347324 (Python) %o A347324 def afind(): %o A347324 num, gte_inventory, rowsum, bigc = 0, [1], 0, 0 %o A347324 print(0, end=", ") %o A347324 while True: %o A347324 c = gte_inventory[num] if num <= bigc else 0 %o A347324 num += 1 %o A347324 rowsum += c %o A347324 if c == 0: %o A347324 print(rowsum, end=", ") %o A347324 num = rowsum = 0 %o A347324 for i in range(min(c, bigc)+1): %o A347324 gte_inventory[i] += 1 %o A347324 for i in range(bigc+1, c+1): %o A347324 gte_inventory.append(1) %o A347324 bigc = len(gte_inventory) - 1 %o A347324 afind() # _Michael S. Branicky_, Sep 19 2021 %Y A347324 Cf. A347738, A003945 (row lengths). %K A347324 nonn,hard %O A347324 0,2 %A A347324 _N. J. A. Sloane_, Sep 13 2021 %E A347324 a(14)-a(16) from _Michael De Vlieger_, Sep 13 2021 %E A347324 a(17)-a(27) from _Michael S. Branicky_, Sep 18 2021