cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347335 Lexicographically earliest sequence of distinct nonnegative integers such that the sum of three consecutive terms is a palindrome in base 10.

This page as a plain text file.
%I A347335 #9 Aug 30 2021 21:47:24
%S A347335 0,1,2,3,4,15,14,26,37,25,39,13,36,6,24,47,17,35,49,27,12,5,16,23,38,
%T A347335 40,10,51,50,20,7,28,9,18,61,22,48,29,11,59,31,21,69,41,71,19,81,91,
%U A347335 30,60,101,111,70,122,80,90,32,100,110,42,120,130,53,8,141,63,58,121,33,68,131,43
%N A347335 Lexicographically earliest sequence of distinct nonnegative integers such that the sum of three consecutive terms is a palindrome in base 10.
%e A347335 a(1) + a(2) + a(3) = 0 + 1 + 2 = 3 (palindrome);
%e A347335 a(2) + a(3) + a(4) = 1 + 2 + 3 = 6 (palindrome);
%e A347335 a(3) + a(4) + a(5) = 2 + 3 + 4 = 9 (palindrome);
%e A347335 a(4) + a(5) + a(6) = 3 + 4 + 15 = 22 (palindrome); etc.
%o A347335 (Python)
%o A347335 def ispal(n): s = str(n); return s == s[::-1]
%o A347335 def aupton(terms):
%o A347335     alst, seen = [0, 1], {0, 1}
%o A347335     for n in range(2, terms):
%o A347335         an, partial_sum = 1, sum(alst[-2:])
%o A347335         while an in seen or not ispal(partial_sum + an): an += 1
%o A347335         alst.append(an); seen.add(an)
%o A347335     return alst
%o A347335 print(aupton(201)) # _Michael S. Branicky_, Aug 28 2021
%Y A347335 Cf. A228730.
%K A347335 base,nonn
%O A347335 1,3
%A A347335 _Eric Angelini_ and _Carole Dubois_, Aug 28 2021