This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347351 #69 Nov 09 2021 06:08:35 %S A347351 1,2,1,3,0,1,4,2,0,1,5,1,1,0,1,6,4,2,1,0,1,7,3,2,1,1,0,1,8,8,3,3,1,1, %T A347351 0,1,9,8,7,3,2,1,1,0,1,10,18,9,5,4,2,1,1,0,1,11,21,13,8,5,3,2,1,1,0,1, %U A347351 12,40,24,16,8,6,3,2,1,1,0,1,13,55,34,21,13,8,5,3,2,1,1,0,1 %N A347351 Triangle read by rows: T(n,k) is the number of links of length k in a set of all necklaces A000358 of length n, 1 <= k <= n. %C A347351 Definitions: %C A347351 1. A link is any 0 in any necklace from A000358 and all 1s following this 0 in this necklace to right until another 0 is encountered. %C A347351 2. Length of the link is the number of elements in the link. %C A347351 Sum of all elements n-row is Fibonacci(n-1)+n iff n=1 or n=p (follows from the identity for the sum of the Fibonacci numbers and the formula for the triangle T(n,k)). %F A347351 If k=1, T(n,k)=n, otherwise T(n,k) = Sum_{d>=k, d|n} Phi(n/d)*Fibonacci(d-k-1), where Phi=A000010. %e A347351 For k > 0: %e A347351 n\k | 1 2 3 4 5 6 7 8 9 10 ... %e A347351 -----+--------------------------------------- %e A347351 1 | 1 %e A347351 2 | 2 1 %e A347351 3 | 3 0 1 %e A347351 4 | 4 2 0 1 %e A347351 5 | 5 1 1 0 1 %e A347351 6 | 6 4 2 1 0 1 %e A347351 7 | 7 3 2 1 1 0 1 %e A347351 8 | 8 8 3 3 1 1 0 1 %e A347351 9 | 9 8 7 3 2 1 1 0 1 %e A347351 10 | 10 18 9 5 4 2 1 1 0 1 %e A347351 ... %e A347351 If we continue the calculation for nonpositive k, we get a table in which each row is a Fibonacci sequence, in which term(0) = A113166, term(1) = A034748. %e A347351 For k <= 0: %e A347351 n\k | 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 ... %e A347351 -----+------------------------------------------------ %e A347351 1 | 0 1 1 2 3 5 8 13 21 34 ... A000045 %e A347351 2 | 1 2 3 5 8 13 21 34 55 89 ... A000045 %e A347351 3 | 1 4 5 9 14 23 37 60 97 157 ... A000285 %e A347351 4 | 3 6 9 15 24 39 63 102 165 267 ... A022086 %e A347351 5 | 3 9 12 21 33 54 87 141 228 369 ... A022379 %e A347351 6 | 8 14 22 36 58 94 152 246 398 644 ... A022112 %e A347351 7 | 8 19 27 46 73 119 192 311 503 814 ... A206420 %e A347351 8 | 17 30 47 77 124 201 325 526 851 1377 ... A022132 %e A347351 9 | 23 44 67 111 178 289 467 756 1223 1979 ... A294116 %e A347351 10 | 41 68 109 177 286 463 749 1212 1961 3173 ... A022103 %e A347351 ... %o A347351 (MATLAB) %o A347351 function [res] = calcLinks(n,k) %o A347351 if k==1 %o A347351 res=n; %o A347351 else %o A347351 d=divisors(n); %o A347351 res=0; %o A347351 for i=1:length(d) %o A347351 if d (i) >= k %o A347351 res=res+eulerPhi(n/d(i))*fiboExt(d(i)-k-1); %o A347351 end %o A347351 end %o A347351 end %o A347351 function [s] = fiboExt(m) % extended fibonacci function (including negative arguments) %o A347351 m=sym(m); % for large fibonacci numbers %o A347351 if m>=0 || mod(m,2)==1 %o A347351 s=fibonacci(abs(m)); %o A347351 else %o A347351 s=fibonacci(abs(m))*(-1); %o A347351 end %o A347351 (PARI) T(n, k) = if (k==1, n, sumdiv(n, d, if (d>=k, eulerphi(n/d)*fibonacci(d-k-1)))); \\ _Michel Marcus_, Aug 29 2021 %Y A347351 Cf. A000010, A000027, A000045, A000358, A113166, A034748. %K A347351 nonn,tabl %O A347351 0,2 %A A347351 _Maxim Karimov_ and Vladislav Sulima, Aug 28 2021