A347354 a(n) = sum of T(n,k) - T(n-1,k) for row n of A347285.
1, 2, 1, 3, 4, 1, 2, 5, 1, 6, 1, 2, 7, 1, 3, 2, 1, 8, 1, 4, 2, 1, 9, 10, 1, 2, 11, 1, 3, 1, 2, 12, 1, 4, 13, 1, 2, 1, 14, 15, 1, 2, 3, 1, 6, 2, 1, 4, 1, 16, 2, 1, 17, 18, 1, 2, 1, 3, 5, 1, 2, 19, 1, 4, 2, 1, 20, 1, 3, 21, 1, 2, 22, 1, 9, 1, 2, 4, 1, 8, 2, 1, 3
Offset: 1
Keywords
Examples
Relation of a(n) and irregular triangle A347285, placing "." after the term in the current row where T(n,k) no longer exceeds T(n-1,k). Since the rows of A347285 reach a fixed point of 0, we interpret T(n,k) for vacant T(n-1,k) as exceeding same. n Row n of A347285 a(n) ----------------------------- 0: 0 1: 1. 1 2: 2 1. 2 3: 3. 1 1 4: 4 2 1. 3 5: 5 3 2 1. 4 6: 6. 3 2 1 1 7: 7 4. 2 1 2 8: 8 5 3 2 1. 5 9: 9. 5 3 2 1 1 10: 10 6 4 3 2 1. 6 ... a(3) = 1 since row 3 of A347285 has {3,1} while row 2 has {2,1}; only the first term of the former exceeds the analogous term in the latter. a(4) = 3 since row 4 = {4,2,1} and row 3 = {3,1}; all 3 terms of the former are larger than the analogous term in the latter, etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Block[{nn = 84, a = {0}, c, e, m}, e[1] = 0; Do[c = 1; e[1]++; Do[Set[m, j]; Which[e[j - 1] == 1, Break[], IntegerQ@ e[j], If[e[j] < #, e[j]++; c++] &@ Floor@ Log[Prime[j], Prime[j - 1]^e[j - 1]], True, Set[e[j], 1]], {j, 2, k}]; AppendTo[a, c + Boole[c == m - 2]], {k, 2, nn}]; MapAt[# - 1 &, a, 4]]
Comments