cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347356 a(n) = m/A006939(A001221(m)) with m = A347284(n).

Original entry on oeis.org

1, 1, 2, 2, 2, 4, 24, 24, 48, 48, 96, 576, 576, 1152, 34560, 207360, 414720, 414720, 829440, 174182400, 1045094400, 2090188800, 2090188800, 2090188800, 4180377600, 25082265600, 25082265600, 50164531200, 1504935936000, 3009871872000, 18059231232000
Offset: 1

Views

Author

Michael De Vlieger, Oct 02 2021

Keywords

Examples

			Diagram of prime power decomposition of A347284(12) = 2^12 * 3^7 * 5^4 * 7^3 * 11^2 * 13, showing Chernoff number A006939(6) with "x" and "X", A002110(A347354(12)) with "X", and a(12) with "o":
          12  o
          11  o
          10  o
           9  o
           8  o
           7  o o
           6  x o
           5  x x
           4  x x x
           3  x x x x
           2  x x x x x
           1  X X X X X X
              2 3 5 7 ...
A347284(12) = A006939(6) * a(12)
          = 5244319080000 * 576
          = 3020727790080000.
		

Crossrefs

Programs

  • Mathematica
    Block[{nn = 31, a = {}, b, c, e, i, p}, Array[Set[e[#], 0] &, Floor[2^# If[# <= 4, 1/2, -1 + 2^(7/(3 #))]] &[Ceiling@ Log2@ nn]]; Do[e[1]++; b = {2^e[1]}; c = {e[1]}; Do[If[Last[b] == 1, Break[], i = e[j]; p = Prime[j]; While[p^i < b[[j - 1]], i++]; AppendTo[b, p^(i - 1)]; AppendTo[c, (i - 1)]; If[i > e[j], e[j]++]], {j, 2, k}]; AppendTo[a, If[First[#] == 0, 1, Times @@ MapIndexed[Prime[First[#2]]^#1 &, TakeWhile[#, # > 0 &]]] &[# - Range[Length[#], 1, -1]] &@ If[k > 2, Most@ c, c]], {k, nn}]; a]

Formula

a(n) = A347284(n)/A006939(A089576(n)).