This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347360 #101 Oct 04 2021 09:02:34 %S A347360 18,72,98,162,288,338,392,450,648,722,882,1152,1352,1458,1568,1800, %T A347360 1922,2178,2450,2592,2738,2888,3042,3528,3698,4050,4608,4802,5202, %U A347360 5408,5832,6272,6498,7200,7442,7688,7938,8450,8712,8978,9522,9800,10368,10658,10952,11250,11552,11858 %N A347360 Numbers that can be represented as the sum of squares of 3 numbers and also equal to twice the sum of their joint products. %C A347360 Integers that can be represented as the sum of three squares of integers x, y, z, and additionally also satisfy x^2+y^2+z^2 = k *(x*y+ x*z + y*z), with k=2. %C A347360 All possible k are given by A331605. %D A347360 E. Grosswald, Representations of Integers as Sums of Squares, Springer-Verlag, NY, 1985. %F A347360 Empirically, such numbers appear to be a(n) = 2*b_n^2 where b_n are numbers whose product of prime indices is even (A324929).The triplet (x,y,x) is always (n*k^2, n*m^2, n*p^2). %e A347360 For example, the third term (1,4,9) is 1^2+4^2+9^2 = 2*(1*4+1*9+4*9) = 98. %e A347360 The sequence is given by %e A347360 a(n) (x, y, z) %e A347360 18 (1,1,4) %e A347360 72 (2,2,8) %e A347360 98 (1,4,9) %e A347360 162 (3,3,12) %e A347360 288 (4,4,16) %e A347360 338 (1,9,16) %e A347360 392 (2,8,18) %e A347360 450 (5,5,20) %e A347360 648 (6,6,24) %e A347360 722 (4,9,25) %e A347360 882 (1,16,25) (3,12,27) (7,7,28) %e A347360 1152 (8,8,32) (2,18,32) %e A347360 1352 (2,18,32) %e A347360 1458 (9,9,36) %e A347360 1568 (4,16,36) %e A347360 1800 (10,10,40) %e A347360 1922 (1,25,36) %e A347360 2178 (11,11,44) %e A347360 2450 (5,20,45) %e A347360 2592 (12,12,48) %e A347360 2738 (9,16,49) %e A347360 2888 (8,18,50) %e A347360 3042 (3,27,48) (4,25,49) (13,13,52) %e A347360 3528 (2,32,50) (6,24,54) %t A347360 q[n_] := (s = Select[PowersRepresentations[n,3,2], AllTrue[#, #1 > 0 &]&]) != {} && MemberQ[(#[[1]]*#[[2]] + #[[2]]*#[[3]] + #[[3]]*#[[1]])& /@ s, n/2]; Select[Range[2, 12000, 2], q] (* _Amiram Eldar_, Oct 03 2021 *) %Y A347360 Subsequence of A000378. Complement of A004215. %Y A347360 Cf. A033428 (case k=1), A324929, A331605 (k-numbers). %K A347360 nonn %O A347360 1,1 %A A347360 _Alexander Kritov_, Sep 22 2021