This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347362 #60 Dec 06 2021 03:13:36 %S A347362 36,1009,12384,82278,746992,5401404,15685704,26936064,137763072, %T A347362 251066304,857520000,618817536,3032856000,2050677000,6100691904, %U A347362 36013192704,16405416000,96569712000,48805535232,131243328000,611996202000,201153672000 %N A347362 Smallest number which can be decomposed into exactly n sums of three distinct positive cubes, but cannot be decomposed into more than one such sum containing the same cube. %C A347362 No cube should appear in two or more sums. 5104 = 15^3 + 10^3 + 9^3 = 15^3 + 12^3 + 1^3 = 16^3 + 10^3 + 2^3 is not a(3), because 15^3 appears in more than one sum. %H A347362 Gleb Ivanov, <a href="/A347362/a347362.txt">Rust program for large terms</a>. %H A347362 Gleb Ivanov, <a href="/A347362/a347362.py.txt">Python program</a>. %e A347362 a(1) = 36 = 1^3 + 2^3 + 3^3. %e A347362 a(2) = 1009 = 1^3 + 2^3 + 10^3 = 4^3 + 6^3 + 9^3. %e A347362 a(3) = 12384 = 1^3 + 6^3 + 23^3 = 2^3 + 12^3 + 22^3 = 15^3 + 16^3 + 17^3. %t A347362 Monitor[Do[k=1;While[Length@Union@Flatten[p=PowersRepresentations[k,3,3]]!=n*3||Length@p!=n||MemberQ[Flatten@p,0],k++];Print@k,{n,10}],k] (* _Giorgos Kalogeropoulos_, Sep 03 2021 *) %Y A347362 Cf. A025333, A025419, A025469, A025398. %Y A347362 Cf. A343968, A343967, A345088, A345087, A345119, A345152. %K A347362 nonn,hard,more %O A347362 1,1 %A A347362 _Gleb Ivanov_, Aug 29 2021 %E A347362 a(13)-a(15) from _Jon E. Schoenfield_, Sep 02 2021 %E A347362 a(16)-a(22) from _Gleb Ivanov_, Sep 12 2021