This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347366 #12 Aug 30 2021 13:42:13 %S A347366 19,29,43,79,101,331,647,709,2039,4723,5261,5827,10271,11057,12163, %T A347366 12743,20183,22039,22807,25999,30319,33563,44777,45319,56843,60623, %U A347366 61927,73583,83077,108013,133447,142183,159541,182659,191833,204803,214463,215689,248789,266239,292573,302593,314339,318823 %N A347366 Primes that are partial sums of the semiprimes. %H A347366 Robert Israel, <a href="/A347366/b347366.txt">Table of n, a(n) for n = 1..10000</a> %e A347366 a(3) = 43 is a term because 43 = A062198(5) is prime. %p A347366 SP:= select(t -> numtheory:-bigomega(t) = 2, [$2..10000]): %p A347366 PSSP:= ListTools:-PartialSums(SP): %p A347366 select(isprime,PSSP); %t A347366 Select[Accumulate @ Select[Range[1500], PrimeOmega[#] == 2 &], PrimeQ] (* _Amiram Eldar_, Aug 29 2021 *) %o A347366 (Python) %o A347366 from sympy import factorint, isprime %o A347366 def aupto(limit): %o A347366 alst, k, s = [], 1, 0 %o A347366 for k in range(1, limit+1): %o A347366 if sum(factorint(k).values()) == 2: %o A347366 s += k %o A347366 if s > limit: break %o A347366 if isprime(s): alst.append(s) %o A347366 return alst %o A347366 print(aupto(320000)) # _Michael S. Branicky_, Aug 29 2021 %Y A347366 Primes in A062198. Cf. A001358. %K A347366 nonn %O A347366 1,1 %A A347366 _J. M. Bergot_ and _Robert Israel_, Aug 29 2021