This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347367 #92 Sep 06 2023 11:49:22 %S A347367 1,1,2,1,1,2,0,2,1,1,2,3,4,3,2,1,1,2,3,0,0,0,3,2,1,1,2,3,4,5,7,5,4,3, %T A347367 2,1,1,2,3,4,0,0,0,0,0,4,3,2,1,1,2,3,4,5,6,7,8,7,6,5,4,3,2,1,1,2,3,4, %U A347367 5,0,0,1,4,1,0,0,5,4,3,2,1,1,2,3,4,5,6,7,8,9,0 %N A347367 Irregular triangle read by rows: T(n,k) is the total number of cells with multiplicity in the k-th column of the ziggurat diagram of n. %C A347367 The "ziggurat" diagram arises as a remnant of the double-staircases diagram described in A335616 after a geometric algorithm equivalent to the algorithm described in A280850 and A296508. %C A347367 The geometric algorithm is also equivalent to the folding of the isosceles triangle described in A237593 forming the structure of the pyramid described in A245092. %C A347367 The ziggurat diagram of n gives us an explanation about the parts, subparts and widths of the symmetric representation of sigma(n). %C A347367 In the ziggurat diagram of n we have that: %C A347367 The number of parts equals A237271(n). %C A347367 The number of subparts equals A001227(n). %C A347367 The number of steps in the central column equals A067742(n). %C A347367 The total number of steps equals A000203(n). %C A347367 The correspondence between both diagrams is because a three-dimensional version of the ziggurat of n can be constructed with units cubes and where the base of the structure is the symmetric representation of sigma(n). %e A347367 Triangle begins: %e A347367 1; %e A347367 1, 2, 1; %e A347367 1, 2, 0, 2, 1; %e A347367 1, 2, 3, 4, 3, 2, 1; %e A347367 1, 2, 3, 0, 0, 0, 3, 2, 1; %e A347367 1, 2, 3, 4, 5, 7, 5, 4, 3, 2, 1; %e A347367 1, 2, 3, 4, 0, 0, 0, 0, 0, 4, 3, 2, 1; %e A347367 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1; %e A347367 1, 2, 3, 4, 5, 0, 0, 1, 4, 1, 0, 0, 5, 4, 3, 2, 1; %e A347367 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 9, 8, 7, 6, 5, 4, 3, 2, 1; %e A347367 1, 2, 3, 4, 5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 5, 4, 3, 2, 1; %e A347367 ... %e A347367 Written as an isosceles triangle we can see the symmetry of every row as shown below: %e A347367 1; %e A347367 1, 2, 1; %e A347367 1, 2, 0, 2, 1; %e A347367 1, 2, 3, 4, 3, 2, 1; %e A347367 1, 2, 3, 0, 0, 0, 3, 2, 1; %e A347367 1, 2, 3, 4, 5, 7, 5, 4, 3, 2, 1; %e A347367 1, 2, 3, 4, 0, 0, 0, 0, 0, 4, 3, 2, 1; %e A347367 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1; %e A347367 1, 2, 3, 4, 5, 0, 0, 1, 4, 1, 0, 0, 5, 4, 3, 2, 1; %e A347367 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 9, 8, 7, 6, 5, 4, 3, 2, 1; %e A347367 1, 2, 3, 4, 5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 5, 4, 3, 2, 1; %e A347367 ... %e A347367 For n = 15 the ziggurat diagram of 15 looks like this: %e A347367 _ %e A347367 | | %e A347367 _ | | _ %e A347367 _| | _| |_ | |_ %e A347367 _| | | | | |_ %e A347367 _| | | | | |_ %e A347367 _| | _| |_ | |_ %e A347367 _| | | | | |_ %e A347367 _| | | | | |_ %e A347367 _| | _| _ |_ | |_ %e A347367 |_ _ _ _ _ _ _ _|_ _ _|_ _ _|_|_ _ _|_ _ _|_ _ _ _ _ _ _ _| %e A347367 1 2 3 4 5 6 7 8 0 0 0 1 4 7 B 7 4 1 0 0 0 8 7 6 5 4 3 2 1 %e A347367 . %e A347367 Where B = 10 + 1 = 11. %e A347367 The left-hand part (or the left-hand staircase) has 8 steps. %e A347367 The right-hand part (or the right-hand staircase) has 8 steps. %e A347367 The central part (formed by two subparts or two staircases) has a total of 7 + 1 = 8 steps. %e A347367 The number of parts equals A237271(15) = 3. %e A347367 The number of subparts equals A001227(15) = 4. %e A347367 The number of steps in the central column equals A067742(15) = 2. %e A347367 The total number of steps equals A000203(15) = 24. %e A347367 Compare the above diagram with the symmetric representation of sigma(15) with subparts as shown below: %e A347367 _ %e A347367 | | %e A347367 | | %e A347367 | | %e A347367 | | %e A347367 | | %e A347367 | | %e A347367 | | %e A347367 _ _ _|_| %e A347367 _ _| | 8 %e A347367 | _ _| %e A347367 _| |_| %e A347367 |_ _| 1 %e A347367 | 7 %e A347367 _ _ _ _ _ _ _ _| %e A347367 |_ _ _ _ _ _ _ _| %e A347367 8 %e A347367 . %e A347367 The left-hand part has 8 square cells. %e A347367 The right-hand part has 8 square cells. %e A347367 The central part (formed by two subparts) has a total of 7 + 1 = 8 square cells. %e A347367 The number of parts equals A237271(15) = 3. %e A347367 The number of subparts equals A001227(15) = 4. %e A347367 The number of square cells on the main diagonal equals A067742(15) = 2. %e A347367 The total number of square cells equals A000203(15) = 24. %Y A347367 Row lengths give A005408. %Y A347367 Analog of A249351. %Y A347367 Cf. A000203, A001227, A067742, A196020, A235791, A236104, A237270, A237271, A237591, A237593 (Dyck paths), A245092, A279387 (subparts), A280850 (algorithm), A280851, A296508, A335616. %K A347367 nonn,tabf %O A347367 1,3 %A A347367 _Omar E. Pol_, Aug 29 2021