cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347371 Number of isomorphism types of automorphism groups of Riemann surfaces of genus n.

This page as a plain text file.
%I A347371 #9 Sep 14 2021 04:16:30
%S A347371 19,37,44,64,59,86,65,154,119,118,98,206,99,176,139,346,117,290,136,
%T A347371 368,187,193,171,621,184,276,306,483,187,404,189,1014,255,332,253,880,
%U A347371 205,381,341,1163,244,549,244,788,436,401,273
%N A347371 Number of isomorphism types of automorphism groups of Riemann surfaces of genus n.
%C A347371 This includes subgroups of the full automorphism group.
%C A347371 Breuer's book erroneously gives a(33) = 1013. (See errata.)
%D A347371 Thomas Breuer, Characters and automorphism groups of compact Riemann surfaces, Cambridge University Press, 2000, p. 91.
%H A347371 Thomas Breuer, <a href="http://www.math.rwth-aachen.de/~Thomas.Breuer/genus/doc/errata.pdf">Errata et Addenda for Characters and Automorphism Groups of Compact Riemann Surfaces</a>.
%H A347371 Jen Paulhus, <a href="https://paulhus.math.grinnell.edu/monodromy.html">Branching data for curves up to genus 48</a>.
%e A347371 The 19 automorphism groups for Riemann surfaces of genus 2 are the trivial group, C2, C3, C4, C2 X C2, C5, C6, S3, Q8, C8, D8, C10, C6 . C2, C2 X C6, D12, QD16, SL_2(3), (C2 X C6) . C2, and GL_2(3). [Breuer, Table 9 on p. 77]
%Y A347371 Cf. A179982, A346293, A347368, A347369, A347370, A347372, A347373.
%K A347371 nonn,hard
%O A347371 2,1
%A A347371 _Eric M. Schmidt_, Aug 29 2021