This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347371 #9 Sep 14 2021 04:16:30 %S A347371 19,37,44,64,59,86,65,154,119,118,98,206,99,176,139,346,117,290,136, %T A347371 368,187,193,171,621,184,276,306,483,187,404,189,1014,255,332,253,880, %U A347371 205,381,341,1163,244,549,244,788,436,401,273 %N A347371 Number of isomorphism types of automorphism groups of Riemann surfaces of genus n. %C A347371 This includes subgroups of the full automorphism group. %C A347371 Breuer's book erroneously gives a(33) = 1013. (See errata.) %D A347371 Thomas Breuer, Characters and automorphism groups of compact Riemann surfaces, Cambridge University Press, 2000, p. 91. %H A347371 Thomas Breuer, <a href="http://www.math.rwth-aachen.de/~Thomas.Breuer/genus/doc/errata.pdf">Errata et Addenda for Characters and Automorphism Groups of Compact Riemann Surfaces</a>. %H A347371 Jen Paulhus, <a href="https://paulhus.math.grinnell.edu/monodromy.html">Branching data for curves up to genus 48</a>. %e A347371 The 19 automorphism groups for Riemann surfaces of genus 2 are the trivial group, C2, C3, C4, C2 X C2, C5, C6, S3, Q8, C8, D8, C10, C6 . C2, C2 X C6, D12, QD16, SL_2(3), (C2 X C6) . C2, and GL_2(3). [Breuer, Table 9 on p. 77] %Y A347371 Cf. A179982, A346293, A347368, A347369, A347370, A347372, A347373. %K A347371 nonn,hard %O A347371 2,1 %A A347371 _Eric M. Schmidt_, Aug 29 2021