cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347372 Number of signature-group pairs for Riemann surfaces of genus n.

This page as a plain text file.
%I A347372 #8 Sep 14 2021 04:16:01
%S A347372 21,49,64,93,87,148,108,268,226,232,201,453,229,408,386,733,337,791,
%T A347372 425,941,628,718,625,1695,715,1101,1147,1642,930,1786,1048,2844,1444,
%U A347372 1848,1495,3452,1500,2424,2192,4192,2000,3585,2220,4193,3211,3638,2814
%N A347372 Number of signature-group pairs for Riemann surfaces of genus n.
%C A347372 This includes subgroups of the full automorphism group.
%C A347372 Breuer's book erroneously gives a(33) = 2843. (See errata.)
%D A347372 Thomas Breuer, Characters and automorphism groups of compact Riemann surfaces, Cambridge University Press, 2000, p. 91.
%H A347372 Thomas Breuer, <a href="http://www.math.rwth-aachen.de/~Thomas.Breuer/genus/doc/errata.pdf">Errata et Addenda for Characters and Automorphism Groups of Compact Riemann Surfaces</a>.
%H A347372 Jen Paulhus, <a href="https://paulhus.math.grinnell.edu/monodromy.html">Branching data for curves up to genus 48</a>.
%e A347372 There are 20 signatures for genus 2. Of these, the signature (0; 2, 2, 3, 3) leads to both C6 and S3. Thus the total number of signature-group pairs is 21.
%Y A347372 Cf. A179982, A346293, A347368, A347369, A347370, A347371, A347373.
%K A347372 nonn,hard
%O A347372 2,1
%A A347372 _Eric M. Schmidt_, Aug 29 2021