cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347373 Number of Aut(G)-orbits on G-characters that come from Riemann surfaces of genus n.

This page as a plain text file.
%I A347373 #8 Sep 14 2021 04:16:15
%S A347373 21,55,73,116,105,208,141,428,335,424,329,952,365,924,789,1834,742,
%T A347373 2119,936,3365,1762,2694,1812,7274,2058,5109,4024,9812,3706,10258,
%U A347373 4404,18905,7664,13482,8041,31541,8473,21882,16148,48952,14259,41110,17308,68873,31616
%N A347373 Number of Aut(G)-orbits on G-characters that come from Riemann surfaces of genus n.
%C A347373 Breuer's book erroneously gives a(33) = 18904. (See errata.)
%D A347373 Thomas Breuer, Characters and automorphism groups of compact Riemann surfaces, Cambridge University Press, 2000, p. 91.
%H A347373 Thomas Breuer, <a href="http://www.math.rwth-aachen.de/~Thomas.Breuer/genus/doc/errata.pdf">Errata et Addenda for Characters and Automorphism Groups of Compact Riemann Surfaces</a>.
%H A347373 Jen Paulhus, <a href="https://paulhus.math.grinnell.edu/monodromy.html">Branching data for curves up to genus 48</a>.
%Y A347373 Cf. A179982, A346293, A347368, A347369, A347370, A347371, A347372.
%K A347373 nonn,hard
%O A347373 2,1
%A A347373 _Eric M. Schmidt_, Aug 29 2021