cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347379 Möbius transform of A108951, the primorial inflation of n.

This page as a plain text file.
%I A347379 #10 Sep 16 2023 05:26:19
%S A347379 1,1,5,2,29,5,209,4,30,29,2309,10,30029,209,145,8,510509,30,9699689,
%T A347379 58,1045,2309,223092869,20,870,30029,180,418,6469693229,145,
%U A347379 200560490129,16,11545,510509,6061,60,7420738134809,9699689,150145,116,304250263527209,1045,13082761331670029,4618,870,223092869,614889782588491409
%N A347379 Möbius transform of A108951, the primorial inflation of n.
%C A347379 Multiplicative because A108951 is.
%H A347379 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>.
%F A347379 a(n) = Sum_{d|n} A008683(n/d) * A108951(d).
%F A347379 a(A000040(n)) = A002110(n) - 1.
%F A347379 From _Amiram Eldar_, Sep 16 2023: (Start)
%F A347379 Multiplicative with a(p^e) = A034386(p)^e - A034386(p)^(e-1).
%F A347379 Sum_{n>=1} 1/a(n) = Product_{n>=1} (1 + A002110(n)/(A002110(n)-1)^2) = 3.8730356211898760903... . (End)
%t A347379 prim[p_] := Product[Prime[i], {i, 1, PrimePi[p]}]; f[p_, e_] := (pr = prim[p])^e - pr^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* _Amiram Eldar_, Sep 16 2023 *)
%o A347379 (PARI)
%o A347379 A002110(n) = prod(i=1,n,prime(i));
%o A347379 A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A002110(primepi(f[i, 1]))^f[i, 2]) };
%o A347379 A347379(n) = sumdiv(n,d,moebius(n/d)*A108951(d));
%Y A347379 Cf. A000040, A002110, A008683, A034386, A108951.
%K A347379 nonn,easy,mult
%O A347379 1,3
%A A347379 _Antti Karttunen_, Sep 01 2021