This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347397 #20 Mar 27 2022 03:09:42 %S A347397 1,2,3,8,9,10,11,16,17,18,19,24,25,26,27,32,33,34,35,40,41,42,43,48, %T A347397 49,50,78,83,84,85,86,91,92,93,94,99,100,101,102,107,108,109,110,115, %U A347397 116,117,118,123,124,125,126,131,132,160,161,166,167,168,169,174,175,176,177,182,183,184 %N A347397 a(n) = Sum_{k=1..n} k^k * floor(n/k^k). %C A347397 What is the limit_{n->infinity} a(n) / (n*log(n)/LambertW(log(n))) ?. - _Vaclav Kotesovec_, Aug 30 2021 %H A347397 Seiichi Manyama, <a href="/A347397/b347397.txt">Table of n, a(n) for n = 1..10000</a> %H A347397 Vaclav Kotesovec, <a href="/A347397/a347397.jpg">Plot of a(n) / (n*log(n)/LambertW(log(n))) for n = 1..10000</a> %F A347397 G.f.: (1/(1 - x)) * Sum_{k>=1} k^k * x^(k^k)/(1 - x^(k^k)). %t A347397 Table[Sum[k^k*Floor[n/k^k], {k, 1, n}], {n, 1, 100}] (* _Vaclav Kotesovec_, Aug 30 2021 *) %o A347397 (PARI) a(n) = sum(k=1, n, k^k*(n\k^k)); %Y A347397 Cf. A024916, A062071, A309125, A309126, A309127. %K A347397 nonn %O A347397 1,2 %A A347397 _Seiichi Manyama_, Aug 30 2021