cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347398 Expansion of g.f. Sum_{k>=1} k^k * x^(k^k)/(1 - x^(k^k)).

This page as a plain text file.
%I A347398 #29 Aug 30 2021 10:47:24
%S A347398 1,1,1,5,1,1,1,5,1,1,1,5,1,1,1,5,1,1,1,5,1,1,1,5,1,1,28,5,1,1,1,5,1,1,
%T A347398 1,5,1,1,1,5,1,1,1,5,1,1,1,5,1,1,1,5,1,28,1,5,1,1,1,5,1,1,1,5,1,1,1,5,
%U A347398 1,1,1,5,1,1,1,5,1,1,1,5,28,1,1,5,1,1,1,5,1,1,1,5,1,1,1,5,1,1,1,5,1,1,1,5,1,1,1,32,1,1,1,5
%N A347398 Expansion of g.f. Sum_{k>=1} k^k * x^(k^k)/(1 - x^(k^k)).
%H A347398 Seiichi Manyama, <a href="/A347398/b347398.txt">Table of n, a(n) for n = 1..10000</a>
%F A347398 a(n) = A347397(n) - A347397(n-1) for n > 1.
%F A347398 a(n) = Sum_{k=1..n, k^k | n} k^k.
%e A347398 1^1 | 108, 2^2 | 108 and 3^3 | 108. So a(108) = 1^1 + 2^2 + 3^3 = 32.
%o A347398 (PARI) a(n) = sum(k=1, n, (n%k^k==0)*k^k);
%Y A347398 Cf. A000203, A000312, A035316, A113061, A300909, A347397, A347399.
%K A347398 nonn
%O A347398 1,4
%A A347398 _Seiichi Manyama_, Aug 30 2021