This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347413 #13 Sep 02 2021 05:44:05 %S A347413 0,4,7,14,11,40,17,17,0,8,85,147,62,16,292,26,138,18,0,570,167,257, %T A347413 360,156,525,882,372,918,0,0,0,0,0,150,0,0,1070,2136,1172,0,1265,1502, %U A347413 663,0,0,0,0,1208,306,2995,0,1404,1389,636,0,272,0,1944,5216,2268,1548,1160,3300,0,924,84,0,3723 %N A347413 a(n) = (product of first n semiprimes) mod (sum of first n semiprimes). %C A347413 A surprising number of terms are 0: 3124 of the first 10000 terms. %H A347413 Robert Israel, <a href="/A347413/b347413.txt">Table of n, a(n) for n = 1..10000</a> %F A347413 a(n) = A112141(n) mod A062198(n). %e A347413 The first 3 semiprimes are 4, 6, 9, so a(3) = (4*6*9) mod (4+6+9) = 216 mod 19 = 7. %p A347413 R:= NULL: %p A347413 s:= 0: p:= 1: count:= 0: %p A347413 for n from 4 while count < 100 do %p A347413 if numtheory:-bigomega(n) = 2 then %p A347413 count:= count+1: s:= s+n; p:= p*n; %p A347413 R:= R, p mod s; %p A347413 fi %p A347413 od: %p A347413 R; %o A347413 (Python) %o A347413 from sympy import factorint %o A347413 def aupton(terms): %o A347413 alst, i, n, s, p = [], 1, 0, 0, 1 %o A347413 while n < terms: %o A347413 if sum(factorint(i).values()) == 2: %o A347413 n += 1; s += i; p *= i %o A347413 alst.append(p%s) %o A347413 i += 1 %o A347413 return alst %o A347413 print(aupton(68)) # _Michael S. Branicky_, Sep 01 2021 %Y A347413 Cf. A001358, A062198, A112141, A347421. %K A347413 nonn %O A347413 1,2 %A A347413 _J. M. Bergot_ and _Robert Israel_, Aug 31 2021