This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347421 #17 Sep 01 2021 02:05:57 %S A347421 1,9,19,29,30,31,32,33,35,36,40,44,45,46,47,51,55,57,64,67,70,71,72, %T A347421 74,81,83,84,92,94,95,96,97,103,104,105,107,108,109,113,116,118,124, %U A347421 125,127,130,131,132,133,136,138,140,142,144,158,159,160,167,177,182,184,188,191,196,202,203,206 %N A347421 Numbers k such that the product of the first k semiprimes is divisible by the sum of the first k semiprimes. %C A347421 What are the asymptotics of a(n)/n as n -> infinity? %H A347421 Robert Israel, <a href="/A347421/b347421.txt">Table of n, a(n) for n = 1..10000</a> %e A347421 a(2) = 9 is a term because the first 9 semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, and 4*6*9*10*14*15*21*22*25 = 5239080000 is divisible by 4+6+9+10+14+15+21+22+25 = 126. %p A347421 R:= NULL: %p A347421 s:= 0: p:= 1: zcount:= 0: scount:= 0: %p A347421 for n from 4 while zcount < 100 do %p A347421 if numtheory:-bigomega(n) = 2 then %p A347421 s:= s+n; p:= p*n; %p A347421 scount:= scount+1; %p A347421 if p mod s = 0 then zcount:= zcount+1; R:= R, scount fi %p A347421 fi %p A347421 od: %p A347421 R; %t A347421 sp = Select[Range[700], PrimeOmega[#] == 2 &]; Position[Divisible[Rest @ FoldList[Times, 1, sp], Accumulate @ sp], True] // Flatten (* _Amiram Eldar_, Aug 31 2021 *) %o A347421 (Python) %o A347421 from sympy import factorint %o A347421 def aupto(limit): %o A347421 alst, i, k, s, p = [], 1, 0, 0, 1 %o A347421 while k < limit: %o A347421 if sum(factorint(i).values()) == 2: %o A347421 k += 1; s += i; p *= i %o A347421 if p%s == 0: alst.append(k) %o A347421 i += 1 %o A347421 return alst %o A347421 print(aupto(206)) # _Michael S. Branicky_, Aug 31 2021 %o A347421 (Julia) %o A347421 using Nemo %o A347421 function A347421List(upto) %o A347421 c, s, p = 0, ZZ(0), ZZ(1) %o A347421 list = Int32[] %o A347421 for n in 4:typemax(Int32) %o A347421 if 2 == sum([e for (p, e) in factor(n)]) %o A347421 s += n; p *= n; c += 1 %o A347421 if divisible(p, s) %o A347421 c > upto && return list %o A347421 push!(list, c) %o A347421 end %o A347421 end %o A347421 end %o A347421 end %o A347421 A347421List(206) |> println # _Peter Luschny_, Aug 31 2021 %Y A347421 Cf. A001358, A062198, A112141, A347413. %K A347421 nonn %O A347421 1,2 %A A347421 _J. M. Bergot_ and _Robert Israel_, Aug 31 2021