A347424 Digitally delicate truncatable primes: every suffix is prime, changing any one decimal digit always produces a composite number, except the first to zero.
7810223, 19579907, 909001523, 984960937, 78406036607, 90124536947, 99020400307, 190002706337, 393086079907, 500708906197, 509000702017, 600180367883, 780430098443, 3534900290107, 5046024021013, 6006006800743, 6009000432797, 9001924501223, 12090900340283
Offset: 1
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..9175 (all terms with <= 29 digits)
Programs
-
Python
from sympy import isprime, primerange def is_digitally_delicate(p): s = str(p) for i in range(len(s)): for d in "0123456789": if d != s[i] and not (i == int(d) == 0): if isprime(int(s[:i] + d + s[i+1:])): return False return True def A033664gen(maxdigits): yield from [2, 3, 5, 7] primestrs, digits, d = ["2", "3", "5", "7"], "0123456789", 1 while len(primestrs) > 0 and d < maxdigits: cands = (d+p for p in primestrs for d in "0123456789") primestrs = [c for c in cands if c[0] == "0" or isprime(int(c))] yield from sorted(map(int, (p for p in primestrs if p[0] != "0"))) d += 1 def afind(maxdigits): for p in A033664gen(maxdigits): if is_digitally_delicate(p): print(p, end=", ") afind(12) # Michael S. Branicky, Sep 01 2021
Extensions
a(3)-a(4) from Amiram Eldar, Sep 01 2021
a(5)-a(19) from Michael S. Branicky, Sep 01 2021
Comments