This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347432 #16 Jul 07 2022 07:03:57 %S A347432 1,0,1,4,14,66,397,2626,18797,148238,1281134,11943790,118998365, %T A347432 1262189748,14203022537,168835162632,2111832477426,27708387132906, %U A347432 380355066174121,5449577398256414,81316095965242989,1261149374033472626,20293627142875917978,338263983223664609198 %N A347432 E.g.f.: exp( exp(x) * (exp(x) - 1 - x) ). %C A347432 Exponential transform of A000295. %F A347432 a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A000295(k) * a(n-k). %F A347432 a(n) = Sum_{k=0..n} (-1)^k * binomial(n,k) * A003725(k) * A143405(n-k). %F A347432 a(n) ~ n^(n + 1/2) * (exp(exp(r)*(exp(r) - r - 1) - r/2 - n) / (r^(n + 1/2) * sqrt(2*exp(r)*(1 + 2*r) - (2 + r*(4 + r))))), where r = LambertW(n)/2 + (4 + LambertW(n)) * LambertW(n)^(3/2) / (8 * sqrt(n) * (1 + LambertW(n))). - _Vaclav Kotesovec_, Jul 07 2022 %p A347432 a:= proc(n) option remember; `if`(n=0, 1, add( %p A347432 a(n-j)*binomial(n-1, j-1)*(2^j-j-1), j=1..n)) %p A347432 end: %p A347432 seq(a(n), n=0..23); # _Alois P. Heinz_, Sep 02 2021 %t A347432 nmax = 23; CoefficientList[Series[Exp[Exp[x] (Exp[x] - 1 - x)], {x, 0, nmax}], x] Range[0, nmax]! %t A347432 a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] (2^k - k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}] %Y A347432 Cf. A000295, A000296, A003725, A055882, A143405, A347434, A347435. %K A347432 nonn %O A347432 0,4 %A A347432 _Ilya Gutkovskiy_, Sep 02 2021