This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347433 #18 Oct 09 2021 16:06:01 %S A347433 4,4,4,10,4,11,4,12,20,4,13,22,4,14,24,34,4,15,26,37,4,16,28,40,52,4, %T A347433 17,30,43,56,4,18,32,46,60,74,4,19,34,49,64,79,4,20,36,52,68,84,100,4, %U A347433 21,38,55,72,89,106,4,22,40,58,76,94,112,130,4,23,42,61,80,99 %N A347433 Irregular triangle read by rows: T(n,k) is the difference between the total arch lengths of a semi-meander multiplied by its number of exterior arches and total arch lengths of the semi-meanders with n + 1 top arches generated by the exterior arch splitting algorithm on the given semi-meander. %F A347433 For n >= 2 and k = 2..floor((n+2)/2), T(n,k) = 4 + (n+2)*(k-2). %e A347433 n = number of top arches, k = number of exterior top arches: %e A347433 n\k 2 3 4 5 6 %e A347433 2: 4 %e A347433 3: 4 %e A347433 4: 4 10 %e A347433 5: 4 11 %e A347433 6: 4 12 20 %e A347433 7: 4 13 22 %e A347433 8: 4 14 24 34 %e A347433 9: 4 15 26 37 %e A347433 10: 4 16 28 40 52 %e A347433 Length of each arch = 1 + number of arches covered: %e A347433 Top arches of a given semi-meander: Arch splitting generated %e A347433 n = 5, k = 2 semi-meanders (6 top arches): %e A347433 1 1 = 2 exterior arches /\ %e A347433 /\ //\\ %e A347433 /\ //\\ ///\\\ %e A347433 //\\ ///\\\ /\ /\ ////\\\\ %e A347433 21 321 = 9 length of top arches 1 1 4321 = 12 length of top arches %e A347433 /\ %e A347433 //\\ /\ %e A347433 ///\\\ //\\ /\ %e A347433 321 21 1 = 10 length of top arches %e A347433 T(5,2) = 4 + (5+2)(2-2) = 4 --------------------------- 4 = (12+10) - (2 * 9); %e A347433 Top arches of given semi meander: %e A347433 n = 5, k = 3 /\ %e A347433 1 1 1 = 3 exterior arches / \ %e A347433 /\ /\ / \ %e A347433 /\ //\\ //\\ //\ /\\ %e A347433 1 21 21 = 7 length top arches /\ ///\\//\\\ %e A347433 1 521 21 = 12 length of top arches %e A347433 /\ %e A347433 /\ //\\ %e A347433 //\\ /\ ///\\\ %e A347433 21 1 321 = 10 length of top arches %e A347433 /\ %e A347433 / \ %e A347433 / /\\ %e A347433 //\//\\\ /\ /\ %e A347433 41 21 1 1 = 10 length of top arches %e A347433 T(5,3) = 4 + (5+2)(3-2) = 11 --------------------- 11 = (12+10+10) - (3 * 7). %Y A347433 Cf. A345747. %K A347433 nonn,tabf %O A347433 2,1 %A A347433 _Roger Ford_, Sep 01 2021