This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347437 #16 Oct 22 2023 16:43:04 %S A347437 1,1,1,2,1,1,1,2,2,1,1,2,1,1,1,4,1,2,1,2,1,1,1,2,2,1,2,2,1,1,1,4,1,1, %T A347437 1,6,1,1,1,2,1,1,1,2,2,1,1,5,2,2,1,2,1,3,1,2,1,1,1,2,1,1,2,8,1,1,1,2, %U A347437 1,1,1,6,1,1,2,2,1,1,1,5,4,1,1,2,1,1,1,2,1,3,1,2,1,1,1,6,1,2,2,6,1,1,1,2,1,1,1,7 %N A347437 Number of factorizations of n with integer alternating product. %C A347437 A factorization of n is a weakly increasing sequence of positive integers > 1 with product n. %C A347437 We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). %H A347437 Antti Karttunen, <a href="/A347437/b347437.txt">Table of n, a(n) for n = 1..65537</a> %H A347437 PlanetMath, <a href="https://planetmath.org/alternatingsum">alternating sum</a> %F A347437 a(2^n) = A344607(n). %F A347437 a(n^2) = A347458(n). %e A347437 The factorizations for n = 4, 16, 36, 48, 54, 64, 108: %e A347437 (4) (16) (36) (48) (54) (64) (108) %e A347437 (2*2) (4*4) (6*6) (2*4*6) (2*3*9) (8*8) (2*6*9) %e A347437 (2*2*4) (2*2*9) (3*4*4) (3*3*6) (2*4*8) (3*6*6) %e A347437 (2*2*2*2) (2*3*6) (2*2*12) (4*4*4) (2*2*27) %e A347437 (3*3*4) (2*2*2*2*3) (2*2*16) (2*3*18) %e A347437 (2*2*3*3) (2*2*4*4) (3*3*12) %e A347437 (2*2*2*2*4) (2*2*3*3*3) %e A347437 (2*2*2*2*2*2) %t A347437 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A347437 altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; %t A347437 Table[Length[Select[facs[n],IntegerQ@*altprod]],{n,100}] %o A347437 (PARI) A347437(n, m=n, ap=1, e=0) = if(1==n, if(e%2, 1==denominator(ap), 1==numerator(ap)), sumdiv(n, d, if((d>1)&&(d<=m), A347437(n/d, d, ap * d^((-1)^e), 1-e)))); \\ _Antti Karttunen_, Oct 22 2023 %Y A347437 Positions of 1's are A005117, complement A013929. %Y A347437 Allowing any alternating product <= 1 gives A339846. %Y A347437 Allowing any alternating product > 1 gives A339890. %Y A347437 The restriction to powers of 2 is A344607. %Y A347437 The even-length case is A347438, also the case of alternating product 1. %Y A347437 The reciprocal version is A347439. %Y A347437 Allowing any alternating product < 1 gives A347440. %Y A347437 The odd-length case is A347441. %Y A347437 The reverse version is A347442. %Y A347437 The additive version is A347446, ranked by A347457. %Y A347437 Allowing any alternating product >= 1 gives A347456. %Y A347437 The restriction to perfect squares is A347458, reciprocal A347459. %Y A347437 The ordered version is A347463. %Y A347437 A001055 counts factorizations. %Y A347437 A046099 counts factorizations with no alternating permutations. %Y A347437 A071321 gives the alternating sum of prime factors of n (reverse: A071322). %Y A347437 A273013 counts ordered factorizations of n^2 with alternating product 1. %Y A347437 A347460 counts possible alternating products of factorizations. %Y A347437 Cf. A025047, A038548, A062312, A088218, A119620, A316523, A330972, A332269, A347445, A347447, A347451, A347454. %K A347437 nonn %O A347437 1,4 %A A347437 _Gus Wiseman_, Sep 06 2021 %E A347437 Data section extended up to a(108) by _Antti Karttunen_, Oct 22 2023