This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347438 #27 Dec 04 2021 13:03:22 %S A347438 1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0, %T A347438 0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0, %U A347438 0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0 %N A347438 Number of unordered factorizations of n with alternating product 1. %C A347438 Also the number of unordered factorizations of n with alternating sum 0. %C A347438 Also the number of unordered factorizations of n with all even multiplicities. %C A347438 This is the even-length case of A347437, the odd-length case being A347441. %C A347438 An unordered factorization of n is a weakly increasing sequence of positive integers > 1 with product n. %C A347438 We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). %H A347438 Antti Karttunen, <a href="/A347438/b347438.txt">Table of n, a(n) for n = 1..65537</a> %H A347438 PlanetMath, <a href="https://planetmath.org/alternatingsum">alternating sum</a> %F A347438 a(2^n) = A035363(n). %F A347438 a(n^2) = A001055(n). %e A347438 The a(n) factorizations for n = 16, 64, 144, 256, 576: %e A347438 4*4 8*8 12*12 16*16 24*24 %e A347438 2*2*2*2 2*2*4*4 2*2*6*6 2*2*8*8 3*3*8*8 %e A347438 2*2*2*2*2*2 3*3*4*4 4*4*4*4 4*4*6*6 %e A347438 2*2*2*2*3*3 2*2*2*2*4*4 2*2*12*12 %e A347438 2*2*2*2*2*2*2*2 2*2*2*2*6*6 %e A347438 2*2*3*3*4*4 %e A347438 2*2*2*2*2*2*3*3 %t A347438 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A347438 altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; %t A347438 Table[Length[Select[facs[n],altprod[#]==1&]],{n,100}] %o A347438 (PARI) A347438(n, m=n, k=0, t=1) = if(1==n, (1==t), my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A347438(n/d, d, 1-k, t*(d^((-1)^k))))); (s)); \\ _Antti Karttunen_, Oct 30 2021 %Y A347438 Positions of zeros are A000037. %Y A347438 Positions of nonzero terms are A000290. %Y A347438 The restriction to perfect squares is A001055 (ordered: A273013). %Y A347438 The restriction to powers of 2 is A035363. %Y A347438 The additive version is A119620, ranked by A028982. %Y A347438 Positions of non-1's are A213367 \ {1}. %Y A347438 Positions of 1's are A280076 = {1} \/ A001248. %Y A347438 Sorted first positions are 1, 2, and all terms of A330972 squared. %Y A347438 Allowing any alternating product <= 1 gives A339846. %Y A347438 Allowing any alternating product > 1 gives A339890. %Y A347438 Allowing any integer alternating product gives A347437. %Y A347438 Allowing any integer reciprocal alternating product gives A347439. %Y A347438 Allowing any alternating product < 1 gives A347440. %Y A347438 Allowing any alternating product >= 1 gives A347456. %Y A347438 A046099 counts factorizations with no alternating permutations. %Y A347438 A071321 gives the alternating sum of prime factors (reverse: A071322). %Y A347438 A316524 gives the alternating sum of prime indices (reverse: A344616). %Y A347438 A344606 counts alternating permutations of prime factors. %Y A347438 A347441 counts odd-length factorizations with integer alternating product. %Y A347438 A347460 counts possible alternating products of factorizations. %Y A347438 Cf. A000041, A005117, A025047, A038548, A062312, A088218, A316523, A332269, A344607, A347442, A347446, A347463. %K A347438 nonn %O A347438 1,16 %A A347438 _Gus Wiseman_, Sep 06 2021 %E A347438 Name and comments clarified (with unordered) by _Jacob Sprittulla_, Oct 05 2021