This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347440 #10 Sep 15 2021 09:52:21 %S A347440 0,0,0,0,0,1,0,1,0,1,0,2,0,1,1,1,0,2,0,2,1,1,0,4,0,1,1,2,0,3,0,3,1,1, %T A347440 1,3,0,1,1,4,0,3,0,2,2,1,0,6,0,2,1,2,0,4,1,4,1,1,0,6,0,1,2,3,1,3,0,2, %U A347440 1,3,0,8,0,1,2,2,1,3,0,6,1,1,0,6,1,1,1 %N A347440 Number of factorizations of n with alternating product < 1. %C A347440 All such factorizations have even length and alternating sum < 0, so partitions of this type are counted by A344608. %C A347440 Also the number of factorizations of n with alternating sum < 0. %C A347440 A factorization of n is a weakly increasing sequence of positive integers > 1 with product n. %C A347440 We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). %H A347440 PlanetMath, <a href="https://planetmath.org/alternatingsum">alternating sum</a> %F A347440 a(2^n) = A344608(n). %F A347440 a(n) = A339846(n) - A347438(n). %e A347440 The a(n) factorizations for n = 6, 12, 24, 30, 48, 72, 96, 120: %e A347440 2*3 2*6 3*8 5*6 6*8 8*9 2*48 2*60 %e A347440 3*4 4*6 2*15 2*24 2*36 3*32 3*40 %e A347440 2*12 3*10 3*16 3*24 4*24 4*30 %e A347440 2*2*2*3 4*12 4*18 6*16 5*24 %e A347440 2*2*2*6 6*12 8*12 6*20 %e A347440 2*2*3*4 2*2*2*9 2*2*3*8 8*15 %e A347440 2*2*3*6 2*2*4*6 10*12 %e A347440 2*3*3*4 2*3*4*4 2*2*5*6 %e A347440 2*2*2*12 2*3*4*5 %e A347440 2*2*2*2*2*3 2*2*2*15 %e A347440 2*2*3*10 %t A347440 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A347440 altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; %t A347440 Table[Length[Select[facs[n],altprod[#]<1&]],{n,100}] %Y A347440 Positions of 0's are A000430. %Y A347440 Positions of 2's are A054753. %Y A347440 Positions of non-0's are A080257. %Y A347440 Positions of 1's are A332269. %Y A347440 The weak version (<= 1 instead of < 1) is A339846, ranked by A028982. %Y A347440 The reciprocal version is A339890. %Y A347440 The additive version is A344608, ranked by A119899. %Y A347440 The even-sum additive version is A344743, ranked by A119899 /\ A300061. %Y A347440 Allowing any integer alternating product gives A347437, additive A347446. %Y A347440 The equal version (= 1 instead of < 1) is A347438. %Y A347440 Allowing any integer reciprocal alternating product gives A347439. %Y A347440 The complement (>= 1 instead of < 1) is counted by A347456. %Y A347440 A038548 counts possible reverse-alternating products of factorizations. %Y A347440 A046099 counts factorizations with no alternating permutations. %Y A347440 A071321 gives the alternating sum of prime factors (reverse: A071322). %Y A347440 A236913 counts partitions of 2n with reverse-alternating sum <= 0. %Y A347440 A273013 counts ordered factorizations of n^2 with alternating product 1. %Y A347440 A347460 counts possible alternating products of factorizations. %Y A347440 Cf. A008549, A058622, A119620, A294175, A330972, A347442, A347447, A347454. %K A347440 nonn %O A347440 1,12 %A A347440 _Gus Wiseman_, Sep 07 2021