This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347443 #13 Dec 13 2022 07:56:03 %S A347443 1,1,1,2,3,5,6,10,12,19,22,34,40,60,69,101,118,168,195,272,317,434, %T A347443 505,679,793,1050,1224,1599,1867,2409,2811,3587,4186,5290,6168,7724, %U A347443 9005,11186,13026,16062,18692,22894,26613,32394,37619,45535,52815,63593,73680 %N A347443 Number of integer partitions of n with reverse-alternating product <= 1. %C A347443 Includes all partitions of even length (A027187). %C A347443 Also the number of integer partitions of n with reverse-alternating sum <= 1. %C A347443 Also the number of integer partitions of n having either even length (A027187) or having exactly one odd part in the conjugate partition (A100824). %C A347443 We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence. %F A347443 a(n) = A027187(n) + A035363(n-1) for n >= 1. [Corrected by _Georg Fischer_, Dec 13 2022] %F A347443 a(n) = A119620(n) + A344608(n). %e A347443 The a(1) = 1 through a(8) = 12 partitions: %e A347443 (1) (11) (21) (22) (32) (33) (43) (44) %e A347443 (111) (31) (41) (42) (52) (53) %e A347443 (1111) (221) (51) (61) (62) %e A347443 (2111) (2211) (331) (71) %e A347443 (11111) (3111) (2221) (2222) %e A347443 (111111) (3211) (3221) %e A347443 (4111) (3311) %e A347443 (22111) (4211) %e A347443 (211111) (5111) %e A347443 (1111111) (221111) %e A347443 (311111) %e A347443 (11111111) %t A347443 altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; %t A347443 Table[Length[Select[IntegerPartitions[n],altprod[Reverse[#]]<=1&]],{n,0,30}] %Y A347443 The odd-length case is A035363 (shifted). %Y A347443 The strict case is A067661. %Y A347443 The non-reverse version is counted by A119620, ranked by A347466. %Y A347443 The even bisection is A236913. %Y A347443 The opposite version (>= instead of <=) is A344607. %Y A347443 The case of < 1 instead of <= 1 is A344608. %Y A347443 The multiplicative version (factorizations) is A347438, non-reverse A339846. %Y A347443 Allowing any integer reverse-alternating product gives A347445. %Y A347443 The complement (> 1 instead of <= 1) is counted by A347449. %Y A347443 Ranked by A347465, non-reverse A347450. %Y A347443 A000041 counts partitions. %Y A347443 A027187 counts partitions of even length. %Y A347443 A027193 counts partitions of odd length. %Y A347443 A058622 counts compositions with alternating sum <= 0 (A294175 for < 0). %Y A347443 A100824 counts partitions with alternating sum <= 1. %Y A347443 A103919 counts partitions by sum and alternating sum (reverse: A344612). %Y A347443 A347461 counts possible alternating products of partitions. %Y A347443 A347462 counts possible reverse-alternating products of partitions. %Y A347443 Cf. A000070, A038548, A086543, A116406, A325534, A325535, A344611, A344654, A344740, A347440, A347442, A347446, A347448. %K A347443 nonn %O A347443 0,4 %A A347443 _Gus Wiseman_, Sep 14 2021