This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347444 #13 Oct 27 2021 09:45:31 %S A347444 0,1,1,2,2,4,4,8,7,14,13,24,21,40,35,62,55,99,85,151,128,224,195,331, %T A347444 283,481,416,690,593,980,844,1379,1189,1918,1665,2643,2292,3630,3161, %U A347444 4920,4299,6659,5833,8931,7851,11905,10526,15805,13987,20872,18560,27398 %N A347444 Number of odd-length integer partitions of n with integer alternating product. %C A347444 We define the alternating product of a sequence (y_1, ... ,y_k) to be the Product_i y_i^((-1)^(i-1)). %C A347444 The reverse version (integer reverse-alternating product) is the same. %e A347444 The a(1) = 1 through a(9) = 14 partitions: %e A347444 (1) (2) (3) (4) (5) (6) (7) (8) (9) %e A347444 (111) (211) (221) (222) (322) (332) (333) %e A347444 (311) (411) (331) (422) (441) %e A347444 (11111) (21111) (421) (611) (522) %e A347444 (511) (22211) (621) %e A347444 (22111) (41111) (711) %e A347444 (31111) (2111111) (22221) %e A347444 (1111111) (32211) %e A347444 (33111) %e A347444 (42111) %e A347444 (51111) %e A347444 (2211111) %e A347444 (3111111) %e A347444 (111111111) %t A347444 altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; %t A347444 Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&IntegerQ[altprod[#]]&]],{n,0,30}] %Y A347444 The reciprocal version is A035363. %Y A347444 Allowing any alternating product gives A027193. %Y A347444 The multiplicative version (factorizations) is A347441. %Y A347444 Allowing any length gives A347446, reverse A347445. %Y A347444 Allowing any length and alternating product > 1 gives A347448. %Y A347444 Allowing any reverse-alternating product > 1 gives A347449. %Y A347444 Ranked by A347453. %Y A347444 The even-length instead of odd-length version is A347704. %Y A347444 A000041 counts partitions. %Y A347444 A000302 counts odd-length compositions, ranked by A053738. %Y A347444 A025047 counts wiggly compositions. %Y A347444 A026424 lists numbers with odd bigomega. %Y A347444 A027187 counts partitions of even length, strict A067661. %Y A347444 A103919 counts partitions by sum and alternating sum (reverse: A344612). %Y A347444 A119620 counts partitions with alternating product 1, ranked by A028982. %Y A347444 A325534 counts separable partitions, ranked by A335433. %Y A347444 A325535 counts inseparable partitions, ranked by A335448. %Y A347444 A339890 counts odd-length factorizations. %Y A347444 A347437 counts factorizations with integer alternating product. %Y A347444 A347461 counts possible alternating products of partitions. %Y A347444 Cf. A000070, A236559, A236913, A236914, A304620, A344654, A347439, A347442, A347456, A347457, A347460, A347462, A347463. %K A347444 nonn %O A347444 0,4 %A A347444 _Gus Wiseman_, Sep 14 2021