This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347445 #9 Sep 27 2021 07:55:16 %S A347445 1,1,2,2,4,4,7,8,12,14,20,24,32,40,50,62,77,99,115,151,170,224,251, %T A347445 331,360,481,517,690,728,980,1020,1379,1420,1918,1962,2643,2677,3630, %U A347445 3651,4920,4926,6659,6625,8931,8853,11905,11781,15805,15562,20872,20518 %N A347445 Number of integer partitions of n with integer reverse-alternating product. %C A347445 We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence. %e A347445 The a(1) = 1 through a(8) = 12 partitions: %e A347445 (1) (2) (3) (4) (5) (6) (7) (8) %e A347445 (11) (111) (22) (221) (33) (322) (44) %e A347445 (211) (311) (222) (331) (332) %e A347445 (1111) (11111) (411) (421) (422) %e A347445 (2211) (511) (611) %e A347445 (21111) (22111) (2222) %e A347445 (111111) (31111) (3311) %e A347445 (1111111) (22211) %e A347445 (41111) %e A347445 (221111) %e A347445 (2111111) %e A347445 (11111111) %t A347445 revaltprod[q_]:=Product[Reverse[q][[i]]^(-1)^(i-1),{i,Length[q]}]; %t A347445 Table[Length[Select[IntegerPartitions[n],IntegerQ[revaltprod[#]]&]],{n,0,30}] %Y A347445 Allowing any reverse-alternating product >= 1 gives A344607. %Y A347445 Allowing any reverse-alternating product < 1 gives A344608. %Y A347445 The multiplicative version is A347442, unreversed A347437. %Y A347445 Allowing any reverse-alternating product <= 1 gives A347443. %Y A347445 Restricting to odd length gives A347444, ranked by A347453. %Y A347445 The unreversed version is A347446, ranked by A347457. %Y A347445 Allowing any reverse-alternating product > 1 gives A347449. %Y A347445 Ranked by A347454. %Y A347445 A000041 counts partitions, with multiplicative version A001055. %Y A347445 A027187 counts partitions of even length. %Y A347445 A027193 counts partitions of odd length. %Y A347445 A103919 counts partitions by sum and alternating sum (reverse: A344612). %Y A347445 A325534 counts separable partitions, ranked by A335433. %Y A347445 A325535 counts inseparable partitions, ranked by A335448. %Y A347445 A339890 counts factorizations with alternating product > 1, reverse A347705. %Y A347445 A347462 counts possible reverse-alternating products of partitions. %Y A347445 Cf. A025047, A067661, A119620, A344654, A344740, A347439, A347440, A347448, A347450, A347451, A347461, A347463, A347704. %K A347445 nonn %O A347445 0,3 %A A347445 _Gus Wiseman_, Sep 14 2021