This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347446 #9 Sep 27 2021 07:55:26 %S A347446 1,1,2,3,5,6,10,12,18,22,31,37,54,62,84,100,134,157,207,241,314,363, %T A347446 463,537,685,785,985,1138,1410,1616,1996,2286,2801,3201,3885,4434, %U A347446 5363,6098,7323,8329,9954,11293,13430,15214,18022,20383,24017,27141,31893,35960 %N A347446 Number of integer partitions of n with integer alternating product. %C A347446 We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). %e A347446 The a(1) = 1 through a(7) = 12 partitions: %e A347446 (1) (2) (3) (4) (5) (6) (7) %e A347446 (11) (21) (22) (41) (33) (61) %e A347446 (111) (31) (221) (42) (322) %e A347446 (211) (311) (51) (331) %e A347446 (1111) (2111) (222) (421) %e A347446 (11111) (411) (511) %e A347446 (2211) (2221) %e A347446 (3111) (4111) %e A347446 (21111) (22111) %e A347446 (111111) (31111) %e A347446 (211111) %e A347446 (1111111) %t A347446 altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; %t A347446 Table[Length[Select[IntegerPartitions[n],IntegerQ[altprod[#]]&]],{n,0,30}] %Y A347446 Allowing any reverse-alternating product >= 1 gives A344607. %Y A347446 Allowing any alternating product <= 1 gives A119620, reverse A347443. %Y A347446 Allowing any reverse-alternating product < 1 gives A344608. %Y A347446 The multiplicative version (factorizations) is A347437, reverse A347442. %Y A347446 The odd-length case is A347444, ranked by A347453. %Y A347446 The reverse version is A347445, ranked by A347454. %Y A347446 Allowing any alternating product > 1 gives A347448, reverse A347449. %Y A347446 Ranked by A347457. %Y A347446 The even-length case is A347704. %Y A347446 A000041 counts partitions. %Y A347446 A027187 counts partitions of even length. %Y A347446 A027193 counts partitions of odd length. %Y A347446 A103919 counts partitions by sum and alternating sum (reverse: A344612). %Y A347446 A325534 counts separable partitions, ranked by A335433. %Y A347446 A325535 counts inseparable partitions, ranked by A335448. %Y A347446 A347461 counts possible alternating products of partitions. %Y A347446 Cf. A025047, A067661, A339890, A347450, A344654, A344740, A347439, A347440, A347451, A347463, A347705. %K A347446 nonn %O A347446 0,3 %A A347446 _Gus Wiseman_, Sep 15 2021