cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347447 Number of strict factorizations of n with alternating product > 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 4, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 23 2021

Keywords

Comments

A strict factorization of n is an increasing sequence of distinct positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
All such factorizations must have odd length.

Examples

			The a(720) = 30 factorizations:
  (2*4*90)     (3*4*60)   (4*5*36)   (5*6*24)  (6*8*15)   (8*9*10)  (720)
  (2*5*72)     (3*5*48)   (4*6*30)   (5*8*18)  (6*10*12)
  (2*6*60)     (3*6*40)   (4*9*20)   (5*9*16)
  (2*8*45)     (3*8*30)   (4*10*18)
  (2*9*40)     (3*10*24)  (4*12*15)
  (2*10*36)    (3*12*20)
  (2*12*30)    (3*15*16)
  (2*15*24)
  (2*18*20)
  (2*3*120)
  (2*3*4*5*6)
		

Crossrefs

Allowing any alternating product gives A045778.
The reverse additive version (or restriction to powers of 2) is A067659.
The non-strict version is A339890.
Allowing equal parts and any alternating product < 1 gives A347440.
Allowing equal parts and any alternating product >= 1 gives A347456.
A046099 counts factorizations with no alternating permutations.
A273013 counts ordered factorizations of n^2 with alternating product 1.
A339846 counts even-length factorizations.
A347437 counts factorizations with integer alternating product.
A347441 counts odd-length factorizations with integer alternating product.
A347460 counts possible alternating products of factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[facs[n],UnsameQ@@#&&altprod[#]>1&]],{n,100}]