A347447 Number of strict factorizations of n with alternating product > 1.
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 4, 1, 1, 1
Offset: 1
Keywords
Examples
The a(720) = 30 factorizations: (2*4*90) (3*4*60) (4*5*36) (5*6*24) (6*8*15) (8*9*10) (720) (2*5*72) (3*5*48) (4*6*30) (5*8*18) (6*10*12) (2*6*60) (3*6*40) (4*9*20) (5*9*16) (2*8*45) (3*8*30) (4*10*18) (2*9*40) (3*10*24) (4*12*15) (2*10*36) (3*12*20) (2*12*30) (3*15*16) (2*15*24) (2*18*20) (2*3*120) (2*3*4*5*6)
Crossrefs
Allowing any alternating product gives A045778.
The reverse additive version (or restriction to powers of 2) is A067659.
The non-strict version is A339890.
Allowing equal parts and any alternating product < 1 gives A347440.
Allowing equal parts and any alternating product >= 1 gives A347456.
A046099 counts factorizations with no alternating permutations.
A273013 counts ordered factorizations of n^2 with alternating product 1.
A339846 counts even-length factorizations.
A347437 counts factorizations with integer alternating product.
A347441 counts odd-length factorizations with integer alternating product.
A347460 counts possible alternating products of factorizations.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; Table[Length[Select[facs[n],UnsameQ@@#&&altprod[#]>1&]],{n,100}]
Comments