cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347449 Number of integer partitions of n with reverse-alternating product > 1.

This page as a plain text file.
%I A347449 #10 Sep 27 2021 07:56:01
%S A347449 0,0,1,1,2,2,5,5,10,11,20,22,37,41,66,75,113,129,190,218,310,358,497,
%T A347449 576,782,908,1212,1411,1851,2156,2793,3255,4163,4853,6142,7159,8972,
%U A347449 10451,12989,15123,18646,21689,26561,30867,37556,43599,52743,61161,73593
%N A347449 Number of integer partitions of n with reverse-alternating product > 1.
%C A347449 All such partitions have odd length.
%C A347449 We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.
%F A347449 a(n) = A344607(n) - A119620(n).
%e A347449 The a(2) = 1 through a(9) = 11 partitions:
%e A347449   (2)  (3)  (4)    (5)    (6)      (7)      (8)        (9)
%e A347449             (211)  (311)  (222)    (322)    (332)      (333)
%e A347449                           (321)    (421)    (422)      (432)
%e A347449                           (411)    (511)    (431)      (522)
%e A347449                           (21111)  (31111)  (521)      (531)
%e A347449                                             (611)      (621)
%e A347449                                             (22211)    (711)
%e A347449                                             (32111)    (32211)
%e A347449                                             (41111)    (42111)
%e A347449                                             (2111111)  (51111)
%e A347449                                                        (3111111)
%t A347449 altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
%t A347449 Table[Length[Select[IntegerPartitions[n],altprod[Reverse[#]]>1&]],{n,0,30}]
%Y A347449 The strict case is A067659, except that a(0) = a(1) = 0.
%Y A347449 The even bisection is A236559.
%Y A347449 The non-reverse multiplicative version is A339890, weak A347456.
%Y A347449 The case of >= 1 instead of > 1 is A344607.
%Y A347449 The opposite version is A344608, also the non-reverse even-length case.
%Y A347449 The complement is counted by A347443, non-reverse A119620.
%Y A347449 Allowing any integer reverse-alternating product gives A347445.
%Y A347449 Allowing any integer alternating product gives A347446.
%Y A347449 Reverse version of A347448; also the odd-length case.
%Y A347449 The Heinz numbers of these partitions are the complement of A347450.
%Y A347449 The multiplicative version (factorizations) is A347705.
%Y A347449 A000041 counts partitions.
%Y A347449 A027187 counts partitions of even length.
%Y A347449 A027193 counts partitions of odd length.
%Y A347449 A100824 counts partitions of n with alternating sum <= 1.
%Y A347449 A103919 counts partitions by sum and alternating sum (reverse: A344612).
%Y A347449 A347462 counts possible reverse-alternating products of partitions.
%Y A347449 Cf. A000070, A008549, A086543, A182616, A236913, A325534, A325535, A344611, A347442, A347444, A347447, A347453, A347461, A347465.
%K A347449 nonn
%O A347449 0,5
%A A347449 _Gus Wiseman_, Sep 16 2021