This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347449 #10 Sep 27 2021 07:56:01 %S A347449 0,0,1,1,2,2,5,5,10,11,20,22,37,41,66,75,113,129,190,218,310,358,497, %T A347449 576,782,908,1212,1411,1851,2156,2793,3255,4163,4853,6142,7159,8972, %U A347449 10451,12989,15123,18646,21689,26561,30867,37556,43599,52743,61161,73593 %N A347449 Number of integer partitions of n with reverse-alternating product > 1. %C A347449 All such partitions have odd length. %C A347449 We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence. %F A347449 a(n) = A344607(n) - A119620(n). %e A347449 The a(2) = 1 through a(9) = 11 partitions: %e A347449 (2) (3) (4) (5) (6) (7) (8) (9) %e A347449 (211) (311) (222) (322) (332) (333) %e A347449 (321) (421) (422) (432) %e A347449 (411) (511) (431) (522) %e A347449 (21111) (31111) (521) (531) %e A347449 (611) (621) %e A347449 (22211) (711) %e A347449 (32111) (32211) %e A347449 (41111) (42111) %e A347449 (2111111) (51111) %e A347449 (3111111) %t A347449 altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; %t A347449 Table[Length[Select[IntegerPartitions[n],altprod[Reverse[#]]>1&]],{n,0,30}] %Y A347449 The strict case is A067659, except that a(0) = a(1) = 0. %Y A347449 The even bisection is A236559. %Y A347449 The non-reverse multiplicative version is A339890, weak A347456. %Y A347449 The case of >= 1 instead of > 1 is A344607. %Y A347449 The opposite version is A344608, also the non-reverse even-length case. %Y A347449 The complement is counted by A347443, non-reverse A119620. %Y A347449 Allowing any integer reverse-alternating product gives A347445. %Y A347449 Allowing any integer alternating product gives A347446. %Y A347449 Reverse version of A347448; also the odd-length case. %Y A347449 The Heinz numbers of these partitions are the complement of A347450. %Y A347449 The multiplicative version (factorizations) is A347705. %Y A347449 A000041 counts partitions. %Y A347449 A027187 counts partitions of even length. %Y A347449 A027193 counts partitions of odd length. %Y A347449 A100824 counts partitions of n with alternating sum <= 1. %Y A347449 A103919 counts partitions by sum and alternating sum (reverse: A344612). %Y A347449 A347462 counts possible reverse-alternating products of partitions. %Y A347449 Cf. A000070, A008549, A086543, A182616, A236913, A325534, A325535, A344611, A347442, A347444, A347447, A347453, A347461, A347465. %K A347449 nonn %O A347449 0,5 %A A347449 _Gus Wiseman_, Sep 16 2021