This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347450 #8 Sep 27 2021 07:56:09 %S A347450 1,2,4,6,8,9,10,14,15,16,18,21,22,24,25,26,32,33,34,35,36,38,39,40,46, %T A347450 49,50,51,54,55,56,57,58,60,62,64,65,69,72,74,77,81,82,84,85,86,87,88, %U A347450 90,91,93,94,95,96,98,100,104,106,111,115,118,119,121,122 %N A347450 Numbers whose multiset of prime indices has alternating product <= 1. %C A347450 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A347450 We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). %C A347450 Also Heinz numbers integer partitions with reverse-alternating product <= 1, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A347450 Also numbers whose multiset of prime indices has alternating sum <= 1. %F A347450 Union of A028982 and A119899. %F A347450 Union of A028260 and A001105. %e A347450 The initial terms and their prime indices: %e A347450 1: {} 26: {1,6} 56: {1,1,1,4} %e A347450 2: {1} 32: {1,1,1,1,1} 57: {2,8} %e A347450 4: {1,1} 33: {2,5} 58: {1,10} %e A347450 6: {1,2} 34: {1,7} 60: {1,1,2,3} %e A347450 8: {1,1,1} 35: {3,4} 62: {1,11} %e A347450 9: {2,2} 36: {1,1,2,2} 64: {1,1,1,1,1,1} %e A347450 10: {1,3} 38: {1,8} 65: {3,6} %e A347450 14: {1,4} 39: {2,6} 69: {2,9} %e A347450 15: {2,3} 40: {1,1,1,3} 72: {1,1,1,2,2} %e A347450 16: {1,1,1,1} 46: {1,9} 74: {1,12} %e A347450 18: {1,2,2} 49: {4,4} 77: {4,5} %e A347450 21: {2,4} 50: {1,3,3} 81: {2,2,2,2} %e A347450 22: {1,5} 51: {2,7} 82: {1,13} %e A347450 24: {1,1,1,2} 54: {1,2,2,2} 84: {1,1,2,4} %e A347450 25: {3,3} 55: {3,5} 85: {3,7} %t A347450 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A347450 altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; %t A347450 Select[Range[100],altprod[primeMS[#]]<=1&] %Y A347450 The additive version (alternating sum <= 0) is A028260. %Y A347450 The reverse version is A028982, counted by A119620. %Y A347450 Allowing any alternating product < 1 gives A119899. %Y A347450 Factorizations of this type are counted by A339846, complement A339890. %Y A347450 Allowing any alternating product >= 1 gives A344609, multiplicative A347456. %Y A347450 Partitions of this type are counted by A347443. %Y A347450 Allowing any integer alternating product gives A347454, reciprocal A347451. %Y A347450 The complement is A347465, reverse A028983, counted by A347448. %Y A347450 A056239 adds up prime indices, row sums of A112798. %Y A347450 A236913 counts partitions of 2n with reverse-alternating sum <= 0. %Y A347450 A316524 gives the alternating sum of prime indices (reverse: A344616). %Y A347450 A335433 lists numbers whose prime indices are separable, complement A335448. %Y A347450 A344606 counts alternating permutations of prime indices. %Y A347450 A347457 lists Heinz numbers of partitions with integer alternating product. %Y A347450 Cf. A001105, A001222, A027193, A344617, A345958, A346703, A346704, A347449, A347461, A347462. %K A347450 nonn %O A347450 1,2 %A A347450 _Gus Wiseman_, Sep 24 2021