cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347451 Numbers whose multiset of prime indices has integer reciprocal alternating product.

This page as a plain text file.
%I A347451 #5 Sep 27 2021 07:56:16
%S A347451 1,2,4,6,8,9,10,14,16,18,21,22,24,25,26,32,34,36,38,39,40,46,49,50,54,
%T A347451 56,57,58,62,64,65,72,74,81,82,84,86,87,88,90,94,96,98,100,104,106,
%U A347451 111,115,118,121,122,126,128,129,133,134,136,142,144,146,150,152
%N A347451 Numbers whose multiset of prime indices has integer reciprocal alternating product.
%C A347451 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A347451 We define the reciprocal alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^i).
%C A347451 Also Heinz numbers integer partitions with integer reverse-reciprocal alternating product, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%e A347451 The terms and their prime indices begin:
%e A347451       1: {}            32: {1,1,1,1,1}       65: {3,6}
%e A347451       2: {1}           34: {1,7}             72: {1,1,1,2,2}
%e A347451       4: {1,1}         36: {1,1,2,2}         74: {1,12}
%e A347451       6: {1,2}         38: {1,8}             81: {2,2,2,2}
%e A347451       8: {1,1,1}       39: {2,6}             82: {1,13}
%e A347451       9: {2,2}         40: {1,1,1,3}         84: {1,1,2,4}
%e A347451      10: {1,3}         46: {1,9}             86: {1,14}
%e A347451      14: {1,4}         49: {4,4}             87: {2,10}
%e A347451      16: {1,1,1,1}     50: {1,3,3}           88: {1,1,1,5}
%e A347451      18: {1,2,2}       54: {1,2,2,2}         90: {1,2,2,3}
%e A347451      21: {2,4}         56: {1,1,1,4}         94: {1,15}
%e A347451      22: {1,5}         57: {2,8}             96: {1,1,1,1,1,2}
%e A347451      24: {1,1,1,2}     58: {1,10}            98: {1,4,4}
%e A347451      25: {3,3}         62: {1,11}           100: {1,1,3,3}
%e A347451      26: {1,6}         64: {1,1,1,1,1,1}    104: {1,1,1,6}
%t A347451 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A347451 altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
%t A347451 Select[Range[100],IntegerQ[1/altprod[primeMS[#]]]&]
%Y A347451 The version for reversed prime indices is A028982, counted by A119620.
%Y A347451 The additive version is A119899, strict A028260.
%Y A347451 Allowing any alternating product >= 1 gives A344609.
%Y A347451 Factorizations of this type are counted by A347439.
%Y A347451 Allowing any alternating product <= 1 gives A347450.
%Y A347451 The non-reciprocal version is A347454.
%Y A347451 Allowing any alternating product > 1 gives A347465, reverse A028983.
%Y A347451 A056239 adds up prime indices, row sums of A112798.
%Y A347451 A316524 gives the alternating sum of prime indices (reverse: A344616).
%Y A347451 A335433 lists numbers whose prime indices are separable, complement A335448.
%Y A347451 A344606 counts alternating permutations of prime indices.
%Y A347451 A347457 ranks partitions with integer alternating product.
%Y A347451 Cf. A001222, A236913, A316523, A344617, A345958, A345959, A346703, A346704, A347437, A347446, A347455.
%K A347451 nonn
%O A347451 1,2
%A A347451 _Gus Wiseman_, Sep 24 2021