A347452 Heinz numbers of integer partitions whose sum is 3/2 their length, rounded down.
1, 2, 6, 12, 36, 40, 72, 80, 216, 224, 240, 432, 448, 480, 1296, 1344, 1408, 1440, 1600, 2592, 2688, 2816, 2880, 3200, 6656, 7776, 8064, 8448, 8640, 8960, 9600, 13312, 15552, 16128, 16896, 17280, 17920, 19200, 34816, 39936, 46656, 48384, 50176, 50688, 51840
Offset: 1
Keywords
Examples
The initial terms and their prime indices: 1: {} 2: {1} 6: {1,2} 12: {1,1,2} 36: {1,1,2,2} 40: {1,1,1,3} 72: {1,1,1,2,2} 80: {1,1,1,1,3} 216: {1,1,1,2,2,2} 224: {1,1,1,1,1,4} 240: {1,1,1,1,2,3} 432: {1,1,1,1,2,2,2} 448: {1,1,1,1,1,1,4} 480: {1,1,1,1,1,2,3} 1296: {1,1,1,1,2,2,2,2} 1344: {1,1,1,1,1,1,2,4} 1408: {1,1,1,1,1,1,1,5} 1440: {1,1,1,1,1,2,2,3} 1600: {1,1,1,1,1,1,3,3}
Crossrefs
Programs
-
Mathematica
Select[Range[1000],Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]==Floor[3*PrimeOmega[#]/2]&]
Comments