This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347453 #7 Sep 27 2021 07:56:25 %S A347453 2,3,5,7,8,11,12,13,17,18,19,20,23,27,28,29,31,32,37,41,42,43,44,45, %T A347453 47,48,50,52,53,59,61,63,67,68,71,72,73,75,76,78,79,80,83,89,92,97,98, %U A347453 99,101,103,107,108,109,112,113,114,116,117,124,125,127,128,130 %N A347453 Heinz numbers of odd-length integer partitions with integer alternating (or reverse-alternating) product. %C A347453 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A347453 We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). %C A347453 Also numbers whose multiset of prime indices has odd length and integer alternating product, where a prime index of n is a number m such that prime(m) divides n. %e A347453 The terms and their prime indices begin: %e A347453 2: {1} 29: {10} 61: {18} %e A347453 3: {2} 31: {11} 63: {2,2,4} %e A347453 5: {3} 32: {1,1,1,1,1} 67: {19} %e A347453 7: {4} 37: {12} 68: {1,1,7} %e A347453 8: {1,1,1} 41: {13} 71: {20} %e A347453 11: {5} 42: {1,2,4} 72: {1,1,1,2,2} %e A347453 12: {1,1,2} 43: {14} 73: {21} %e A347453 13: {6} 44: {1,1,5} 75: {2,3,3} %e A347453 17: {7} 45: {2,2,3} 76: {1,1,8} %e A347453 18: {1,2,2} 47: {15} 78: {1,2,6} %e A347453 19: {8} 48: {1,1,1,1,2} 79: {22} %e A347453 20: {1,1,3} 50: {1,3,3} 80: {1,1,1,1,3} %e A347453 23: {9} 52: {1,1,6} 83: {23} %e A347453 27: {2,2,2} 53: {16} 89: {24} %e A347453 28: {1,1,4} 59: {17} 92: {1,1,9} %t A347453 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A347453 altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; %t A347453 Select[Range[100],OddQ[PrimeOmega[#]]&&IntegerQ[altprod[primeMS[#]]]&] %Y A347453 The reciprocal version is A000290. %Y A347453 Allowing any alternating product <= 1 gives A001105. %Y A347453 Allowing any alternating product gives A026424. %Y A347453 Factorizations of this type are counted by A347441. %Y A347453 These partitions are counted by A347444. %Y A347453 Allowing any length gives A347454. %Y A347453 Allowing any alternating product > 1 gives A347465. %Y A347453 A027193 counts odd-length partitions. %Y A347453 A056239 adds up prime indices, row sums of A112798. %Y A347453 A316524 gives the alternating sum of prime indices (reverse: A344616). %Y A347453 A335433 lists numbers whose prime indices are separable, complement A335448. %Y A347453 A344606 counts alternating permutations of prime indices. %Y A347453 A347446 counts partitions with integer alternating product. %Y A347453 A347457 ranks partitions with integer alt product, complement A347455. %Y A347453 A347461 counts possible alternating products of partitions. %Y A347453 A347462 counts possible reverse-alternating products of partitions. %Y A347453 Cf. A001222, A028260, A028982, A028983, A339890, A344617, A344653, A345958, A346703, A346704, A347437, A347443, A347450, A347451. %K A347453 nonn %O A347453 1,1 %A A347453 _Gus Wiseman_, Sep 24 2021