cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347454 Numbers whose multiset of prime indices has integer alternating product.

This page as a plain text file.
%I A347454 #8 Sep 27 2021 07:56:32
%S A347454 1,2,3,4,5,7,8,9,11,12,13,16,17,18,19,20,23,25,27,28,29,31,32,36,37,
%T A347454 41,42,43,44,45,47,48,49,50,52,53,59,61,63,64,67,68,71,72,73,75,76,78,
%U A347454 79,80,81,83,89,92,97,98,99,100,101,103,107,108,109,112,113
%N A347454 Numbers whose multiset of prime indices has integer alternating product.
%C A347454 First differs from A265640 in having 42.
%C A347454 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A347454 We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
%C A347454 Also Heinz numbers of partitions with integer reverse-alternating product, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%e A347454 The terms and their prime indices begin:
%e A347454       1: {}            20: {1,1,3}         47: {15}
%e A347454       2: {1}           23: {9}             48: {1,1,1,1,2}
%e A347454       3: {2}           25: {3,3}           49: {4,4}
%e A347454       4: {1,1}         27: {2,2,2}         50: {1,3,3}
%e A347454       5: {3}           28: {1,1,4}         52: {1,1,6}
%e A347454       7: {4}           29: {10}            53: {16}
%e A347454       8: {1,1,1}       31: {11}            59: {17}
%e A347454       9: {2,2}         32: {1,1,1,1,1}     61: {18}
%e A347454      11: {5}           36: {1,1,2,2}       63: {2,2,4}
%e A347454      12: {1,1,2}       37: {12}            64: {1,1,1,1,1,1}
%e A347454      13: {6}           41: {13}            67: {19}
%e A347454      16: {1,1,1,1}     42: {1,2,4}         68: {1,1,7}
%e A347454      17: {7}           43: {14}            71: {20}
%e A347454      18: {1,2,2}       44: {1,1,5}         72: {1,1,1,2,2}
%e A347454      19: {8}           45: {2,2,3}         73: {21}
%t A347454 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A347454 altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
%t A347454 Select[Range[100],IntegerQ[altprod[primeMS[#]]]&]
%Y A347454 The even-length case is A000290.
%Y A347454 The additive version is A026424.
%Y A347454 Allowing any alternating product < 1 gives A119899, strict A028260.
%Y A347454 Allowing any alternating product >= 1 gives A344609, multiplicative A347456.
%Y A347454 Factorizations of this type are counted by A347437.
%Y A347454 These partitions are counted by A347445, reverse A347446.
%Y A347454 Allowing any alternating product <= 1 gives A347450.
%Y A347454 The reciprocal version is A347451.
%Y A347454 The odd-length case is A347453.
%Y A347454 The version for reversed prime indices is A347457, complement A347455.
%Y A347454 Allowing any alternating product > 1 gives A347465, reverse A028983.
%Y A347454 A056239 adds up prime indices, row sums of A112798.
%Y A347454 A316524 gives the alternating sum of prime indices (reverse: A344616).
%Y A347454 A335433 lists numbers whose prime indices are separable, complement A335448.
%Y A347454 A344606 counts alternating permutations of prime indices.
%Y A347454 A347461 counts possible alternating products of partitions.
%Y A347454 A347462 counts possible reverse-alternating products of partitions.
%Y A347454 Cf. A001105, A001222, A028982, A119620, A236913, A316523, A344653, A346703, A346704, A347443, A347439.
%K A347454 nonn
%O A347454 1,2
%A A347454 _Gus Wiseman_, Sep 26 2021