A347455 Heinz numbers of integer partitions with non-integer alternating product.
15, 30, 33, 35, 51, 55, 60, 66, 69, 70, 77, 85, 91, 93, 95, 102, 105, 110, 119, 120, 123, 132, 135, 138, 140, 141, 143, 145, 154, 155, 161, 165, 170, 177, 182, 186, 187, 190, 201, 203, 204, 205, 209, 210, 215, 217, 219, 220, 221, 231, 238, 240, 246, 247, 249
Offset: 1
Keywords
Examples
The terms and their reversed prime indices begin: 15: (3,2) 102: (7,2,1) 161: (9,4) 30: (3,2,1) 105: (4,3,2) 165: (5,3,2) 33: (5,2) 110: (5,3,1) 170: (7,3,1) 35: (4,3) 119: (7,4) 177: (17,2) 51: (7,2) 120: (3,2,1,1,1) 182: (6,4,1) 55: (5,3) 123: (13,2) 186: (11,2,1) 60: (3,2,1,1) 132: (5,2,1,1) 187: (7,5) 66: (5,2,1) 135: (3,2,2,2) 190: (8,3,1) 69: (9,2) 138: (9,2,1) 201: (19,2) 70: (4,3,1) 140: (4,3,1,1) 203: (10,4) 77: (5,4) 141: (15,2) 204: (7,2,1,1) 85: (7,3) 143: (6,5) 205: (13,3) 91: (6,4) 145: (10,3) 209: (8,5) 93: (11,2) 154: (5,4,1) 210: (4,3,2,1) 95: (8,3) 155: (11,3) 215: (14,3) For example, (4,3,2,1) has alternating product 4/3*2/1 = 8/3, so the Heinz number 210 is in the sequence.
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; Select[Range[100],!IntegerQ[altprod[Reverse[primeMS[#]]]]&]
Comments