This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347456 #6 Oct 27 2021 22:22:39 %S A347456 1,1,1,2,1,1,1,2,2,1,1,2,1,1,1,4,1,2,1,2,1,1,1,3,2,1,2,2,1,2,1,4,1,1, %T A347456 1,6,1,1,1,3,1,2,1,2,2,1,1,6,2,2,1,2,1,3,1,3,1,1,1,5,1,1,2,8,1,2,1,2, %U A347456 1,2,1,8,1,1,2,2,1,2,1,6,4,1,1,5,1,1,1 %N A347456 Number of factorizations of n with alternating product >= 1. %C A347456 We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). %C A347456 A factorization of n is a weakly increasing sequence of positive integers > 1 with product n. %C A347456 Also the number of factorizations of n with alternating sum >= 0. %F A347456 a(n) = A347438(n) + A347440(n). %e A347456 The a(n) factorizations for n = 4, 16, 24, 36, 60, 64, 96: %e A347456 4 16 24 36 60 64 96 %e A347456 2*2 4*4 2*2*6 6*6 2*5*6 8*8 2*6*8 %e A347456 2*2*4 2*3*4 2*2*9 3*4*5 2*4*8 3*4*8 %e A347456 2*2*2*2 2*3*6 2*2*15 4*4*4 4*4*6 %e A347456 3*3*4 2*3*10 2*2*16 2*2*24 %e A347456 2*2*3*3 2*2*4*4 2*3*16 %e A347456 2*2*2*2*4 2*4*12 %e A347456 2*2*2*2*2*2 2*2*2*2*6 %e A347456 2*2*2*3*4 %t A347456 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A347456 altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; %t A347456 Table[Length[Select[facs[n],altprod[#]>=1&]],{n,100}] %Y A347456 The case of partitions is A000041, reverse A344607. %Y A347456 The reverse version is A001055, strict A347705. %Y A347456 Positions of 3's appear to be A065036. %Y A347456 Positions of 1's are 1 and A167171. %Y A347456 The opposite version (<= instead of >=) is A339846. %Y A347456 The strict version (> instead of >=) is A339890, also the odd-length case. %Y A347456 Allowing any integer alternating product gives A347437. %Y A347456 The case of alternating product 1 is A347438, also the even-length case. %Y A347456 Allowing any integer reciprocal alternating product gives A347439. %Y A347456 The complement (< instead of >=) is A347440. %Y A347456 Allowing any integer reverse-alternating product gives A347442. %Y A347456 A038548 counts factorizations with a wiggly permutation. %Y A347456 A045778 counts strict factorizations. %Y A347456 A074206 counts ordered factorizations. %Y A347456 A103919 counts partitions by sum and alternating sum (reverse: A344612). %Y A347456 A119620 counts partitions with alternating product 1. %Y A347456 A347447 counts strict factorizations with alternating product > 1. %Y A347456 Cf. A001700, A028983, A316523, A347441, A347443, A347446, A347448, A347450, A347454, A347463, A347708. %K A347456 nonn %O A347456 1,4 %A A347456 _Gus Wiseman_, Oct 09 2021