cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347460 Number of distinct possible alternating products of factorizations of n.

This page as a plain text file.
%I A347460 #9 Oct 27 2021 22:22:45
%S A347460 1,1,1,2,1,2,1,3,2,2,1,4,1,2,2,4,1,4,1,4,2,2,1,6,2,2,3,4,1,5,1,5,2,2,
%T A347460 2,7,1,2,2,6,1,5,1,4,4,2,1,8,2,4,2,4,1,5,2,6,2,2,1,10,1,2,4,6,2,5,1,4,
%U A347460 2,5,1,10,1,2,4,4,2,5,1,8,4,2,1,10,2,2
%N A347460 Number of distinct possible alternating products of factorizations of n.
%C A347460 We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
%C A347460 A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
%e A347460 The a(n) alternating products for n = 1, 4, 8, 12, 24, 30, 36, 48, 60, 120:
%e A347460   1  4  8    12   24   30    36   48    60    120
%e A347460      1  2    3    6    10/3  9    12    15    30
%e A347460         1/2  3/4  8/3  5/6   4    16/3  20/3  40/3
%e A347460              1/3  2/3  3/10  1    3     15/4  15/2
%e A347460                   3/8  2/15  4/9  3/4   12/5  24/5
%e A347460                   1/6        1/4  1/3   3/5   10/3
%e A347460                              1/9  3/16  5/12  5/6
%e A347460                                   1/12  4/15  8/15
%e A347460                                         3/20  3/10
%e A347460                                         1/15  5/24
%e A347460                                               2/15
%e A347460                                               3/40
%e A347460                                               1/30
%t A347460 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t A347460 altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
%t A347460 Table[Length[Union[altprod/@facs[n]]],{n,100}]
%Y A347460 Positions of 1's are 1 and A000040.
%Y A347460 Positions of 2's appear to be A001358.
%Y A347460 Positions of 3's appear to be A030078.
%Y A347460 Dominates A038548, the version for reverse-alternating product.
%Y A347460 Counting only integers gives A046951.
%Y A347460 The even-length case is A072670.
%Y A347460 The version for partitions (not factorizations) is A347461, reverse A347462.
%Y A347460 The odd-length case is A347708.
%Y A347460 The length-3 case is A347709.
%Y A347460 A001055 counts factorizations (strict A045778, ordered A074206).
%Y A347460 A056239 adds up prime indices, row sums of A112798.
%Y A347460 A103919 counts partitions by sum and alternating sum (reverse: A344612).
%Y A347460 A108917 counts knapsack partitions, ranked by A299702.
%Y A347460 A276024 counts distinct positive subset-sums of partitions, strict A284640.
%Y A347460 A292886 counts knapsack factorizations, by sum A293627.
%Y A347460 A299701 counts distinct subset-sums of prime indices, positive A304793.
%Y A347460 A301957 counts distinct subset-products of prime indices.
%Y A347460 A304792 counts distinct subset-sums of partitions.
%Y A347460 Cf. A002033, A119620, A143823, A325770, A339846, A339890, A347437, A347438, A347439, A347440, A347442, A347456.
%K A347460 nonn
%O A347460 1,4
%A A347460 _Gus Wiseman_, Oct 06 2021