This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347460 #9 Oct 27 2021 22:22:45 %S A347460 1,1,1,2,1,2,1,3,2,2,1,4,1,2,2,4,1,4,1,4,2,2,1,6,2,2,3,4,1,5,1,5,2,2, %T A347460 2,7,1,2,2,6,1,5,1,4,4,2,1,8,2,4,2,4,1,5,2,6,2,2,1,10,1,2,4,6,2,5,1,4, %U A347460 2,5,1,10,1,2,4,4,2,5,1,8,4,2,1,10,2,2 %N A347460 Number of distinct possible alternating products of factorizations of n. %C A347460 We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). %C A347460 A factorization of n is a weakly increasing sequence of positive integers > 1 with product n. %e A347460 The a(n) alternating products for n = 1, 4, 8, 12, 24, 30, 36, 48, 60, 120: %e A347460 1 4 8 12 24 30 36 48 60 120 %e A347460 1 2 3 6 10/3 9 12 15 30 %e A347460 1/2 3/4 8/3 5/6 4 16/3 20/3 40/3 %e A347460 1/3 2/3 3/10 1 3 15/4 15/2 %e A347460 3/8 2/15 4/9 3/4 12/5 24/5 %e A347460 1/6 1/4 1/3 3/5 10/3 %e A347460 1/9 3/16 5/12 5/6 %e A347460 1/12 4/15 8/15 %e A347460 3/20 3/10 %e A347460 1/15 5/24 %e A347460 2/15 %e A347460 3/40 %e A347460 1/30 %t A347460 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A347460 altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; %t A347460 Table[Length[Union[altprod/@facs[n]]],{n,100}] %Y A347460 Positions of 1's are 1 and A000040. %Y A347460 Positions of 2's appear to be A001358. %Y A347460 Positions of 3's appear to be A030078. %Y A347460 Dominates A038548, the version for reverse-alternating product. %Y A347460 Counting only integers gives A046951. %Y A347460 The even-length case is A072670. %Y A347460 The version for partitions (not factorizations) is A347461, reverse A347462. %Y A347460 The odd-length case is A347708. %Y A347460 The length-3 case is A347709. %Y A347460 A001055 counts factorizations (strict A045778, ordered A074206). %Y A347460 A056239 adds up prime indices, row sums of A112798. %Y A347460 A103919 counts partitions by sum and alternating sum (reverse: A344612). %Y A347460 A108917 counts knapsack partitions, ranked by A299702. %Y A347460 A276024 counts distinct positive subset-sums of partitions, strict A284640. %Y A347460 A292886 counts knapsack factorizations, by sum A293627. %Y A347460 A299701 counts distinct subset-sums of prime indices, positive A304793. %Y A347460 A301957 counts distinct subset-products of prime indices. %Y A347460 A304792 counts distinct subset-sums of partitions. %Y A347460 Cf. A002033, A119620, A143823, A325770, A339846, A339890, A347437, A347438, A347439, A347440, A347442, A347456. %K A347460 nonn %O A347460 1,4 %A A347460 _Gus Wiseman_, Oct 06 2021