cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347461 Number of distinct possible alternating products of integer partitions of n.

This page as a plain text file.
%I A347461 #7 Oct 27 2021 22:22:52
%S A347461 1,1,2,3,4,6,7,10,12,16,19,23,27,34,41,49,57,67,78,91,106,125,147,166,
%T A347461 187,215,245,277,317,357,405,460,524,592,666,740,829,928,1032,1147,
%U A347461 1273,1399,1555,1713,1892,2087,2298,2523,2783,3070,3383,3724,4104,4504
%N A347461 Number of distinct possible alternating products of integer partitions of n.
%C A347461 We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
%e A347461 Partitions representing each of the a(7) = 10 alternating products are:
%e A347461      (7) -> 7
%e A347461     (61) -> 6
%e A347461     (52) -> 5/2
%e A347461    (511) -> 5
%e A347461     (43) -> 4/3
%e A347461    (421) -> 2
%e A347461   (4111) -> 4
%e A347461    (331) -> 1
%e A347461    (322) -> 3
%e A347461   (3211) -> 3/2
%t A347461 altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
%t A347461 Table[Length[Union[altprod/@IntegerPartitions[n]]],{n,0,30}]
%Y A347461 The version for alternating sum is A004526.
%Y A347461 Counting only integers gives A028310, reverse A347707.
%Y A347461 The version for factorizations is A347460, reverse A038548.
%Y A347461 The reverse version is A347462.
%Y A347461 A000041 counts partitions.
%Y A347461 A027187 counts partitions of even length.
%Y A347461 A027193 counts partitions of odd length.
%Y A347461 A103919 counts partitions by sum and alternating sum (reverse: A344612).
%Y A347461 A108917 counts knapsack partitions, ranked by A299702.
%Y A347461 A122768 counts distinct submultisets of partitions.
%Y A347461 A126796 counts complete partitions.
%Y A347461 A293627 counts knapsack factorizations by sum.
%Y A347461 A301957 counts distinct subset-products of prime indices.
%Y A347461 A304792 counts subset-sums of partitions, positive A276024, strict A284640.
%Y A347461 A304793 counts distinct positive subset-sums of prime indices.
%Y A347461 A325534 counts separable partitions, ranked by A335433.
%Y A347461 A325535 counts inseparable partitions, ranked by A335448.
%Y A347461 Cf. A000070, A001055, A002033, A002219, A028983, A119620, A325768, A345926, A347443, A347444, A347445, A347446.
%K A347461 nonn
%O A347461 0,3
%A A347461 _Gus Wiseman_, Oct 06 2021