This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347464 #18 Nov 03 2021 09:09:28 %S A347464 1,1,1,2,1,5,1,6,2,5,1,26,1,5,5,20,1,26,1,26,5,5,1,134,2,5,6,26,1,73, %T A347464 1,70,5,5,5,230,1,5,5,134,1,73,1,26,26,5,1,670,2,26,5,26,1,134,5,134, %U A347464 5,5,1,686,1,5,26,252,5,73,1,26,5,73,1,1714,1,5,26 %N A347464 Number of even-length ordered factorizations of n^2 into factors > 1 with alternating product 1. %C A347464 An ordered factorization of n is a sequence of positive integers > 1 with product n. %C A347464 We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). %C A347464 Also the number of ordered pairs of ordered factorizations of n, both of the same length. %C A347464 Note that the version for all n (not just squares) is 0 except at perfect squares. %H A347464 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a> %e A347464 The a(12) = 26 ordered factorizations: %e A347464 (2*2*6*6) (3*2*4*6) (6*2*2*6) (4*2*3*6) (12*12) %e A347464 (2*3*6*4) (3*3*4*4) (6*3*2*4) (4*3*3*4) %e A347464 (2*4*6*3) (3*4*4*3) (6*4*2*3) (4*4*3*3) %e A347464 (2*6*6*2) (3*6*4*2) (6*6*2*2) (4*6*3*2) %e A347464 (2*2*2*2*3*3) (3*2*2*2*2*3) %e A347464 (2*2*2*3*3*2) (3*2*2*3*2*2) %e A347464 (2*2*3*2*2*3) (3*3*2*2*2*2) %e A347464 (2*2*3*3*2*2) %e A347464 (2*3*2*2*3*2) %e A347464 (2*3*3*2*2*2) %e A347464 For example, the ordered factorization 6*3*2*4 = 144 has alternating product 6/3*2/4 = 1, so is counted under a(12). %t A347464 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A347464 altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; %t A347464 Table[Length[Select[Join@@Permutations/@facs[n^2],EvenQ[Length[#]]&&altprod[#]==1&]],{n,100}] %o A347464 (PARI) %o A347464 A347464aux(n, k=0, t=1) = if(1==n, (0==k)&&(1==t), my(s=0); fordiv(n, d, if((d>1), s += A347464aux(n/d, 1-k, t*(d^((-1)^k))))); (s)); %o A347464 A347464(n) = A347464aux(n^2); \\ _Antti Karttunen_, Oct 30 2021 %Y A347464 Positions of 1's are A008578 (1 and A000040). %Y A347464 The restriction to powers of 2 is A000984. %Y A347464 Positions of 2's are A001248. %Y A347464 The not necessarily even-length version is A273013. %Y A347464 A000290 lists squares, complement A000037. %Y A347464 A001055 counts factorizations. %Y A347464 A027187 counts even-length partitions. %Y A347464 A074206 counts ordered factorizations. %Y A347464 A119620 counts partitions with alternating product 1, ranked by A028982. %Y A347464 A339846 counts even-length factorizations, ordered A347706. %Y A347464 A347438 counts factorizations with alternating product 1. %Y A347464 A347457 ranks partitions with integer alternating product. %Y A347464 A347460 counts possible alternating products of factorizations. %Y A347464 A347466 counts factorizations of n^2. %Y A347464 Cf. A062312, A339890, A347437, A347439, A347440, A347442, A347456, A347459, A347463, A347705. %K A347464 nonn %O A347464 1,4 %A A347464 _Gus Wiseman_, Sep 23 2021