This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347465 #9 Nov 03 2021 10:47:23 %S A347465 3,5,7,11,12,13,17,19,20,23,27,28,29,30,31,37,41,42,43,44,45,47,48,52, %T A347465 53,59,61,63,66,67,68,70,71,73,75,76,78,79,80,83,89,92,97,99,101,102, %U A347465 103,105,107,108,109,110,112,113,114,116,117,120,124,125,127 %N A347465 Numbers whose multiset of prime indices has alternating product > 1. %C A347465 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A347465 We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). %C A347465 All terms have odd bigomega (A001222). %C A347465 Also Heinz numbers integer partitions with reverse-alternating product > 1. %e A347465 The terms and their prime indices begin: %e A347465 3: {2} 37: {12} 68: {1,1,7} %e A347465 5: {3} 41: {13} 70: {1,3,4} %e A347465 7: {4} 42: {1,2,4} 71: {20} %e A347465 11: {5} 43: {14} 73: {21} %e A347465 12: {1,1,2} 44: {1,1,5} 75: {2,3,3} %e A347465 13: {6} 45: {2,2,3} 76: {1,1,8} %e A347465 17: {7} 47: {15} 78: {1,2,6} %e A347465 19: {8} 48: {1,1,1,1,2} 79: {22} %e A347465 20: {1,1,3} 52: {1,1,6} 80: {1,1,1,1,3} %e A347465 23: {9} 53: {16} 83: {23} %e A347465 27: {2,2,2} 59: {17} 89: {24} %e A347465 28: {1,1,4} 61: {18} 92: {1,1,9} %e A347465 29: {10} 63: {2,2,4} 97: {25} %e A347465 30: {1,2,3} 66: {1,2,5} 99: {2,2,5} %e A347465 31: {11} 67: {19} 101: {26} %t A347465 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A347465 altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; %t A347465 Select[Range[100],altprod[primeMS[#]]>1&] %Y A347465 The squarefree case is A030059 without 2. %Y A347465 The reverse version is A028983, counted by A119620. %Y A347465 The opposite version (< 1 instead of > 1) is A119899. %Y A347465 Factorizations of this type are counted by A339890, reverse A347705. %Y A347465 The weak version (>= 1 instead of > 1) is A344609. %Y A347465 Partitions of this type are counted by A347449, reverse A347448. %Y A347465 The complement is A347450, counted by A339846 or A347443. %Y A347465 Allowing any integer reverse-alternating product gives A347454. %Y A347465 Allowing any integer alternating product gives A347457. %Y A347465 A335433 ranks inseparable partitions, complement A335448. %Y A347465 A347446 counts partitions with integer alternating product, reverse A347445. %Y A347465 Cf. A008549, A344607, A344608, A344611, A347442, A347444, A347447, A347453, A347456, A347461, A347462. %K A347465 nonn %O A347465 1,1 %A A347465 _Gus Wiseman_, Sep 27 2021