cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347467 Numbers h such that floor(k*sqrt(3)) = floor(h*sqrt(2)) for some k.

This page as a plain text file.
%I A347467 #5 Nov 20 2021 21:25:07
%S A347467 1,4,6,9,11,14,16,17,18,21,22,23,26,27,28,29,31,32,33,34,36,38,39,41,
%T A347467 43,44,46,48,49,51,53,54,55,56,59,60,61,64,65,66,68,70,71,73,76,78,81,
%U A347467 83,86,88,91,93,96,98,99,101,103,104,105,108,109,110,113
%N A347467 Numbers h such that floor(k*sqrt(3)) = floor(h*sqrt(2)) for some k.
%e A347467 Beatty sequence for sqrt(2): (1,2,4,5,7,8,9,11,12,14,...)
%e A347467 Beatty sequence for sqrt(3): (1,3,5,6,8,10,12,13,15,...)
%e A347467 Intersection: (1,5,8,12,...), as in A346308.
%e A347467 a(2) = 4 because floor(3*sqrt(3)) = floor(4*sqrt(2)).  (For each such h, there is only one such k.)
%t A347467 z = 200; r = Sqrt[2]; s = Sqrt[3];
%t A347467 u = Table[Floor[n r], {n, 0, z}]; (*A001951*)
%t A347467 v = Table[Floor[n s], {n, 1, z}]; (*A022838*)
%t A347467 w = Intersection[u, v]  (*A346308*)
%t A347467 zz = -1 + Length[w];
%t A347467 Table[Ceiling[w[[n]]/r], {n, 1, zz}] (* A347467 *)
%t A347467 Table[Ceiling[w[[n]]/s], {n, 1, zz}] (* A347468 *)
%Y A347467 Cf. A001951, A022838, A346308, A347468, A347469.
%K A347467 nonn
%O A347467 1,2
%A A347467 _Clark Kimberling_, Oct 16 2021