This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347468 #4 Nov 20 2021 21:25:16 %S A347468 1,3,5,7,9,11,13,14,15,17,18,19,21,22,23,24,25,26,27,28,29,31,32,33, %T A347468 35,36,38,39,40,42,43,44,45,46,48,49,50,52,53,54,56,57,58,60,62,64,66, %U A347468 68,70,72,74,76,78,80,81,82,84,85,86,88,89,90,92,93,94,95 %N A347468 Numbers k such that floor(k*sqrt(3)) = floor(h*sqrt(2)) for some h. %e A347468 Beatty sequence for sqrt(2): (1,2,4,5,7,8,9,11,12,14,...) %e A347468 Beatty sequence for sqrt(3): (1,3,5,6,8,10,12,13,15,...) %e A347468 Intersection: (1,5,8,12,...), as in A346308. %e A347468 a(2) = 3 because floor(3*sqrt(3)) = floor(4*sqrt(2)). (For each such k, there is only one such h.) %t A347468 z = 200; r = Sqrt[2]; s = Sqrt[3]; %t A347468 u = Table[Floor[n r], {n, 0, z}]; (*A001951*) %t A347468 v = Table[Floor[n s], {n, 1, z}]; (*A022838*) %t A347468 w = Intersection[u, v] (*A346308*) %t A347468 zz = -1 + Length[w]; %t A347468 Table[Ceiling[w[[n]]/r], {n, 1, zz}] (* A347467 *) %t A347468 Table[Ceiling[w[[n]]/s], {n, 1, zz}] (* A347468 *) %Y A347468 Cf. A001951, A022838, A346308, A347467, A347469. %K A347468 nonn %O A347468 1,2 %A A347468 _Clark Kimberling_, Oct 28 2021