cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A355276 Number of n-digit terms in A347475.

Original entry on oeis.org

2, 2, 1, 4, 4, 6, 3, 8, 9, 12, 11, 18, 33, 37, 40, 43, 64, 77, 71, 118, 135, 167, 241
Offset: 1

Views

Author

M. F. Hasler, Sep 08 2022

Keywords

Crossrefs

Cf. A000217 (triangular numbers), A014261 (numbers with only odd digits), A117960 (triangular numbers with only odd digits), A349243 (indices of the former), A347475 (such indices with only odd digits), A349247 (least such k-digit term), A355277 (largest such k-digit term).

Extensions

a(20)-a(23) from Michael S. Branicky, Sep 09 2022

A349247 Least n-digit number k with only odd digits such that the k-th triangular number also has only odd digits.

Original entry on oeis.org

1, 13, 177, 1777, 15173, 135173, 3397973, 13535137, 135157537, 1193111377, 11979759377, 119595919137, 1195991117973, 11979931335173, 119777591993777, 1199999593111377, 11977793913551137, 119593573333335733, 1195935733333335733, 11977593393931151137, 119759371717733717537
Offset: 1

Views

Author

M. F. Hasler, Nov 23 2021

Keywords

Comments

It appears that all a(n), n > 9, have initial digits "119".
It also appears that the sequence of digits of the terms converges to a limit, (1, 1, 9, 3, 1, ...). Can this be proved or disproved?

Crossrefs

Cf. A000217 (triangular numbers), A014261 (numbers with only odd digits), A117960 (triangular numbers with only odd digits), A349243 (indices of the former), A347475 (such indices with only odd digits), A355277 (largest such k-digit term).

Programs

  • PARI
    apply( A349247(n)=A347475_next(10^n\9), [1..15]) \\ Edited (moved function body to A347475) by M. F. Hasler, Sep 13 2022
    
  • Python
    from itertools import product
    def A349247(n):
        for a in product('13579',repeat=n):
            if set(str((m:=int(''.join(a)))*(m+1)>>1)) <= {'1', '3', '5', '7', '9'}:
                return m # Chai Wah Wu, Sep 08 2022
    
  • Python
    A349247 = lambda n: next_A347475(10**n//9) # M. F. Hasler, Sep 10 2022

Formula

a(n) = min { k in A347475 | k >= 10^(n-1) }.

A355277 Largest n-digit number k with only odd digits such that the k-th triangular number also has only odd digits.

Original entry on oeis.org

5, 17, 177, 5573, 79137, 791377, 7913777, 79971937, 557335733, 5995957537, 59995599137, 599591791137, 7991739957973, 79971739957537, 799739357539937, 7991713197753777, 79991971791119137, 799999173991317537, 7997391313911797973
Offset: 1

Views

Author

M. F. Hasler, Sep 07 2022

Keywords

Comments

It appears that all a(n), n > 12, have initial digits "799".
The first digit of a(n) is never 9. - Chai Wah Wu, Sep 08 2022
As in A347475, all terms with more than 2 digits end in 33, 37, 73 or 77. - M. F. Hasler, Sep 12 2022

Examples

			T(5) = A000217(5) = 5*6/2 = 5*3 = 15 has only odd digits, and neither T(7) nor T(9) have this property, therefore a(1) = 5.
		

Crossrefs

Cf. A000217 (triangular numbers), A014261 (numbers with only odd digits), A117960 (triangular numbers with only odd digits), A349243 (indices of the former), A347475 (such indices with only odd digits), A349247 (least k-digit term).

Programs

  • PARI
    apply( A355277(n)=A347475_prec(10^n), [1..15]) \\ M. F. Hasler, Sep 08 2022
  • Python
    from itertools import product
    def A355277(n):
        for a in '7531':
            for b in product('97531',repeat=n-1):
                m = int(a+''.join(b))
                if set(str(m*(m+1)>>1)) <= {'1', '3', '5', '7', '9'}:
                    return m # Chai Wah Wu, Sep 08 2022
    

Formula

a(n) = max { k in A347475 | k < 10^n }.

A383939 Numbers k such that k and the k-th triangular number T(k) = k*(k+1)/2 have only even digits.

Original entry on oeis.org

0, 28, 40, 64, 400, 2828, 4000, 4064, 6428, 22840, 24028, 40000, 202428, 240028, 400000, 2040040, 2400028, 4000000, 6422840, 6428064, 6646624, 20044064, 20202080, 20400040, 20406080, 24000028, 40000000, 66400064, 200042428, 204000040, 228406080, 240000028
Offset: 1

Views

Author

Shyam Sunder Gupta, Aug 18 2025

Keywords

Comments

The sequence also contains the infinite subsequence 4*10^n for n >= 1.

Examples

			64 is a term since it and T(64) = 2080 both have only even digits.
		

Crossrefs

Programs

  • Mathematica
    q[k_] := And @@ (AllTrue[IntegerDigits[#], EvenQ] & /@ {k, k*(k+1)/2}); Select[Range[0, 4*10^6], q] (* Amiram Eldar, Aug 18 2025 *)
Showing 1-4 of 4 results.