A355276 Number of n-digit terms in A347475.
2, 2, 1, 4, 4, 6, 3, 8, 9, 12, 11, 18, 33, 37, 40, 43, 64, 77, 71, 118, 135, 167, 241
Offset: 1
Crossrefs
Extensions
a(20)-a(23) from Michael S. Branicky, Sep 09 2022
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
apply( A349247(n)=A347475_next(10^n\9), [1..15]) \\ Edited (moved function body to A347475) by M. F. Hasler, Sep 13 2022
from itertools import product def A349247(n): for a in product('13579',repeat=n): if set(str((m:=int(''.join(a)))*(m+1)>>1)) <= {'1', '3', '5', '7', '9'}: return m # Chai Wah Wu, Sep 08 2022
A349247 = lambda n: next_A347475(10**n//9) # M. F. Hasler, Sep 10 2022
T(5) = A000217(5) = 5*6/2 = 5*3 = 15 has only odd digits, and neither T(7) nor T(9) have this property, therefore a(1) = 5.
apply( A355277(n)=A347475_prec(10^n), [1..15]) \\ M. F. Hasler, Sep 08 2022
from itertools import product def A355277(n): for a in '7531': for b in product('97531',repeat=n-1): m = int(a+''.join(b)) if set(str(m*(m+1)>>1)) <= {'1', '3', '5', '7', '9'}: return m # Chai Wah Wu, Sep 08 2022
64 is a term since it and T(64) = 2080 both have only even digits.
q[k_] := And @@ (AllTrue[IntegerDigits[#], EvenQ] & /@ {k, k*(k+1)/2}); Select[Range[0, 4*10^6], q] (* Amiram Eldar, Aug 18 2025 *)
Comments