A347485 Irregular triangle read by rows: T(n, k) is the q-multinomial coefficient defined by the k-th partition of n in Abramowitz-Stegun order, evaluated at q = 2.
1, 1, 3, 1, 7, 21, 1, 15, 35, 105, 315, 1, 31, 155, 465, 1085, 3255, 9765, 1, 63, 651, 1395, 1953, 9765, 22785, 29295, 68355, 205065, 615195, 1, 127, 2667, 11811, 8001, 82677, 177165, 413385, 248031, 1240155, 2893695, 3720465, 8681085, 26043255, 78129765
Offset: 1
Examples
The number of subspace chains 0 < V_1 < V_2 < (F_2)^3 is 21 = T(3, (1, 1, 1)). There are 7 = A022166(3, 1) choices for a one-dimensional subspace V_1 and, for each of them, 3 = A022166(2, 1) extensions to a two-dimensional subspace V_2. Triangle begins: k: 1 2 3 4 5 6 7 --------------------------- n=1: 1 n=2: 1 3 n=3: 1 7 21 n=4: 1 15 35 105 315 n=5: 1 31 155 465 1085 3255 9765
References
- R. P. Stanley, Enumerative Combinatorics (vol. 1), Cambridge University Press (1997), Section 1.3.
Links
- Álvar Ibeas, First 20 rows, flattened
Formula
T(n, (n)) = 1. T(n, L) = A022166(n, e) * T(n - e, L \ {e}), if L is a partition of n and e < n is a part of L.
Comments