This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347486 #14 Sep 15 2021 10:26:42 %S A347486 1,1,4,1,13,52,1,40,130,520,2080,1,121,1210,4840,15730,62920,251680,1, %T A347486 364,11011,33880,44044,440440,1431430,1761760,5725720,22902880, %U A347486 91611520,1,1093,99463,925771,397852,12035023,37030840,120350230,48140092,481400920,1564552990 %N A347486 Irregular triangle read by rows: T(n, k) is the q-multinomial coefficient defined by the k-th partition of n in Abramowitz-Stegun order, evaluated at q = 3. %C A347486 Abuse of notation: we write T(n, L) for T(n, k), where L is the k-th partition of n in A-St order. %C A347486 For any permutation (e_1,...,e_r) of the parts of L, T(n, L) is the number of chains of subspaces 0 < V_1 < ··· < V_r = (F_3)^n with dimension increments (e_1,...,e_r). %D A347486 R. P. Stanley, Enumerative Combinatorics (vol. 1), Cambridge University Press (1997), Section 1.3. %H A347486 Álvar Ibeas, <a href="/A347486/b347486.txt">First 20 rows, flattened</a> %F A347486 T(n, (n)) = 1. T(n, L) = A022167(n, e) * T(n - e, L \ {e}), if L is a partition of n and e < n is a part of L. %e A347486 The number of subspace chains 0 < V_1 < V_2 < (F_3)^3 is 52 = T(3, (1, 1, 1)). There are 13 = A022167(3, 1) choices for a one-dimensional subspace V_1 and, for each of them, 4 = A022167(2, 1) extensions to a two-dimensional subspace V_2. %e A347486 Triangle begins: %e A347486 k: 1 2 3 4 5 6 7 %e A347486 ---------------------------------- %e A347486 n=1: 1 %e A347486 n=2: 1 4 %e A347486 n=3: 1 13 52 %e A347486 n=4: 1 40 130 520 2080 %e A347486 n=5: 1 121 1210 4840 15730 62920 251680 %Y A347486 Cf. A036038 (q = 1), A022167, A015001 (last entry in each row). %K A347486 nonn,tabf %O A347486 1,3 %A A347486 _Álvar Ibeas_, Sep 03 2021