A347487 Irregular triangle read by rows: T(n, k) is the q-multinomial coefficient defined by the k-th partition of n in Abramowitz-Stegun order, evaluated at q = 4.
1, 1, 5, 1, 21, 105, 1, 85, 357, 1785, 8925, 1, 341, 5797, 28985, 121737, 608685, 3043425, 1, 1365, 93093, 376805, 465465, 7912905, 33234201, 39564525, 166171005, 830855025, 4154275125, 1, 5461, 1490853, 24208613, 7454265, 508380873, 2057732105, 8642474841
Offset: 1
Examples
The number of subspace chains 0 < V_1 < V_2 < (F_4)^3 is 105 = T(3, (1, 1, 1)). There are 21 = A022168(3, 1) choices for a one-dimensional subspace V_1 and, for each of them, 5 = A022168(2, 1) extensions to a two-dimensional subspace V_2. Triangle begins: k: 1 2 3 4 5 6 7 -------------------------------------- n=1: 1 n=2: 1 5 n=3: 1 21 105 n=4: 1 85 357 1785 8925 n=5: 1 341 5795 28985 121737 608685 3043425
References
- R. P. Stanley, Enumerative Combinatorics (vol. 1), Cambridge University Press (1997), Section 1.3.
Links
- Álvar Ibeas, First 20 rows, flattened
Formula
T(n, (n)) = 1. T(n, L) = A022168(n, e) * T(n - e, L \ {e}), if L is a partition of n and e < n is a part of L.
Comments