A347488 Irregular triangle read by rows: T(n, k) is the q-multinomial coefficient defined by the k-th partition of n in Abramowitz-Stegun order, evaluated at q = 5.
1, 1, 6, 1, 31, 186, 1, 156, 806, 4836, 29016, 1, 781, 20306, 121836, 629486, 3776916, 22661496, 1, 3906, 508431, 2558556, 3050586, 79315236, 409795386, 475891416, 2458772316, 14752633896, 88515803376, 1, 19531, 12714681, 320327931, 76288086
Offset: 1
Examples
The number of subspace chains 0 < V_1 < V_2 < (F_5)^3 is 186 = T(3, (1, 1, 1)). There are 31 = A022169(3, 1) choices for a one-dimensional subspace V_1 and, for each of them, 6 = A022169(2, 1) extensions to a two-dimensional subspace V_2. Triangle begins: k: 1 2 3 4 5 ----------------------- n=1: 1 n=2: 1 6 n=3: 1 31 186 n=4: 1 156 806 4836 29016
References
- R. P. Stanley, Enumerative Combinatorics (vol. 1), Cambridge University Press (1997), Section 1.3.
Links
- Álvar Ibeas, First 20 rows, flattened
Formula
T(n, (n)) = 1. T(n, L) = A022169(n, e) * T(n - e, L \ {e}), if L is a partition of n and e < n is a part of L.
Comments