cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347495 Factorial base Niven numbers (A118363) with a record gap to the next factorial base Niven number.

This page as a plain text file.
%I A347495 #8 Sep 03 2021 20:56:51
%S A347495 1,2,9,12,30,40,60,192,224,318,550,640,1136,1989,4875,4980,23355,
%T A347495 24272,24378,40131,60192,63872,80472,238680,280140,2027340,2872620,
%U A347495 3622068,13400475,21293094,25399080,28584626,111020840,278690360,355419734,398884590,834592590
%N A347495 Factorial base Niven numbers (A118363) with a record gap to the next factorial base Niven number.
%C A347495 The corresponding gaps are 1, 2, 3, 4, 5, 8, 10, 12, 16, 18, 20, 32, 34, 39, 52, 55, 60, 67, 82, 85, 90, 96, 154, 174, 210, 216, 222, 268, 297, 318, 336, 346, 430, 466, 517, 546, 604, ...
%e A347495 The first 8 factorial base Niven numbers are 1, 2, 4, 6, 8, 9, 12 and 16. The gaps between them are 1, 2, 2, 2, 1, 3 and 4. The record gaps, 1, 2, 3 and 4, occur after the terms 1, 2, 9 and 12.
%t A347495 fivenQ[n_] := Module[{s = 0, i = 2, k = n}, While[k > 0, k = Floor[n/i!]; s = s + (i - 1)*k; i++]; Divisible[n, n - s]]; gapmax = 0; n1 = 1; s = {}; Do[If[fivenQ[n], gap = n - n1; If[gap > gapmax, gapmax = gap; AppendTo[s, n1]]; n1 = n], {n, 2, 10^5}]; s (* after _Jean-François Alcover_ at A034968 *)
%Y A347495 Cf. A034968, A118363, A328205, A337076, A337077, A347496.
%K A347495 nonn,base
%O A347495 1,2
%A A347495 _Amiram Eldar_, Sep 03 2021